Death-Mask в открытом доступе

С сегодняшнего дня игра Death-Mask уходит в открытый доступ – можете следить за прогрессом реализации игры по ссылке: (Вау!)
[Death-Mask Wild]

На данный момент версия – 0.1 содержит базовое управление на стрелках, wsad, генерация карт, предметов (в том числе и маску смерти!), рендеринг.
Предстоит еще куча работы, и мне очень интересен ваш фидбэк – поэтому можете писать комментарии на странице с wild версией игры.
В финальной версии игра заканчивается после того как игрок найдет предмет – Маску Смерти (Death-Mask)
Приятного теста : )

Авторы ресурсов

Hangar18 утилита индексации исходного кода

Hangar18 – утилита для индексации исходного кода C++, написанная на Rust. Данная утилита будет реализовывать функционал “перейти к определению” в Saber-Plus IDE.
На вход утилите подается абсолютный путь к директории исходного кода, строка декларации которую необходимо найти. На выходе grep-подобный вывод.

Исходный код:
https://gitlab.com/demensdeum/hangar18

Taytay контроль статуса Git репозиториев

Представляю вашему вниманию Taytay – утилиту для контроля статуса репозиторев git для языка Swift. На текущий момент Свифт можно установить на всех мейнстримовых десктопных операционных системах. Для Ubuntu я рекомендую использовать Swiftenv. Завязан Тайтай на утилиту git-cola, но можешь отредактировать исходник и поменять на любую другую программу.

Исходный код:
https://gitlab.com/demensdeum/taytay

Бьемся с Малевичем, черные квадраты OpenGL

К любому разработчику на OpenGL периодически приходит Малевич. Происходит это неожиданно и дерзко, ты просто запускаешь проект и видишь черный квадрат вместо чудесного рендера:

Сегодня я опишу по какой причине меня посетил черный квадрат, найденные проблемы из-за которых OpenGL ничего не рисует на экране, а иногда и вообще делает окно прозрачным.

Используй инструменты

Для отладки OpenGL мне помогли два инструмента: renderdoc и apitrace. Renderdoc – инструмент для отладки процесса рендеринга OpenGL, просматривать можно все – вертексы, шейдеры, текстуры, отладочные сообщения от драйвера. Apitrace – инструмент для трейсинга вызовов графического API, делает дамп вызовов и показывает аргументы. Также есть великолепная возможность сравнивать два дампа через wdiff (или без него, но не так удобно)

Проверяй с кем работаешь

У меня есть операционная система Ubuntu 16.10 со старыми зависимостями SDL2, GLM, assimp, GLEW. В последней версии Ubuntu 18.04 я получаю сборку игры Death-Mask которая ничего не показывает на экране (только черный квадрат). При использовании chroot и сборке в 16.10 я получаю рабочую сборку игры с графикой.


Похоже что-то сломалось в Ubuntu 18.04

LDD показал линковку к идентичным библиотекам SDL2, GL. Прогоняя нерабочий билд в renderdoc, я увидел мусор на входе в вертексный шейдер, но мне нужно было более солидное подтверждение. Для того чтобы разобраться в разнице между бинариками я прогнал их оба через apitrace. Сравнение дампов показало мне что сборка на свежей убунте ломает передачу матриц перспективы в OpenGL, фактически отправляя туда мусор:

Матрицы собираются в библиотеке GLM. После копирования GLM из 16.04 – я снова получил рабочий билд игры. Проблема оказалась в разнице инициализации единичной матрицы в GLM 9.9.0, в ней необходивно явно указывать аргумент mat4(1.0f) в конструкторе. Поменяв инициализацию и отписав автору библиотеки, я принялся делать тесты для FSGL. в процессе написания которых я обнаружил недоработки в FSGL, их опишу далее.

Определись ты кто по жизни

Для корректной работы с OpenGL нужно в добровольно принудительном порядке запросить контекст определенной версии. Так это выглядит для SDL2 (проставлять версию нужно строго до инициализации контекста):

    SDL_GL_SetAttribute( SDL_GL_CONTEXT_MAJOR_VERSION, 3);
    SDL_GL_SetAttribute( SDL_GL_CONTEXT_MINOR_VERSION, 2);
    SDL_GL_SetAttribute( SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE );   

Например Renderdoc не работает с контекстами ниже 3.2. Хочется отметить что после переключения контекста высока вероятность увидеть тот самый черный экран. Почему?
Потому что контекст OpenGL 3.2 обязательно требует наличие VAO буфера, без которого не работают 99% графических драйверов. Добавить его легко:

    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);

Не спи, замерзнешь

Также я встретился с интересной проблемой на Kubuntu, вместо черного квадрата у меня выводился прозрачный, а иногда все рендерилось корректно. Решение этой проблемы я нашел на Stack Overflow:
https://stackoverflow.com/questions/38411515/sdl2-opengl-window-appears-semi-transparent-sometimes

В коде тестового рендера FSGL тоже присутствовал sleep(2s); Так вот на Xubuntu и Ubuntu я получал корректный рендер и отправлял приложение спать, однако на Kubuntu я получил прозрачный экран в 80% случаев запуска из Dolphin и 30% запусков и терминала. Для решения данной проблемы я добавил рендеринг в каждом кадре, после опроса SDLEvent, как это рекомендуется делать в документации.

Код теста:
https://gitlab.com/demensdeum/FSGLtests/blob/master/renderModelTest/

Поговори с драйвером

OpenGL поддерживает канал связи между приложением и драйвером, для его активации нужно включить флаги GL_DEBUG_OUTPUT, GL_DEBUG_OUTPUT_SYNCHRONOUS, проставить оповещение glDebugMessageControl и привязать каллбек через glDebugMessageCallback.
Пример инициализации можно взять здесь:
https://github.com/rock-core/gui-vizkit3d/blob/master/src/EnableGLDebugOperation.cpp

Не бойся, посмотри как он увеличивается

В данной заметке я расскажу о своих злоключениях с умными указателями shared_ptr. После реализации генерации следующего уровня в своей игре Death-Mask, я заметил утечку памяти. Каждый новый уровень давал прирост + 1 мегабайт к потребляемой оперативной памяти. Очевидно что какие-то объекты оставались в памяти и не освобождали ее. Для исправления данного факта необходимо было реализовать корректную реализацию ресурсов при перегрузке уровня, чего видимо сделано не было. Так как я использовал умные указатели, то вариантов решения данной задачи было несколько, первый заключался в ручном отсмотре кода (долго и скучно), второй же предполагал исследование возможностей дебагера lldb, исходного кода libstdc++ на предмет возможности автоматического отслеживания изменений счетчика.

В интернете все советы сводились к тому чтобы вручную отсматривать код, исправить и бить себя плетями после нахождения проблемной строчки кода. Также предлагалось реализовать свою собственную систему работы с памятью, как это делают все крупные проекты разрабатываемые еще с 90-х и нулевых, до прихода умных указателей в стандарт C++11. Мною была предпринята попытка использовать брейкпоинты на конструкторе копии всех shared_ptr, после нескольких дней ничего дельного не получилось. Была идея добавить логирование в библиотеку libstdc++, однако трудозатраты (о)казались чудовищными.


Cowboy Bebop (1998)

Решение пришло мне в голову внезапно в виде отслеживания изменений приватной переменной shared_ptr – use_count. Сделать это можно с помощью встроенных в lldb ватчпоинтов (watchpoint) После создания shared_ptr через make_shared, изменения счетчика в lldb можно отслеживать с помощью строки:

watch set var camera._M_refcount._M_pi->_M_use_count

Где “camera” это shared_ptr объект состояние счетчика которого необходимо отследить. Конечно внутренности shared_ptr будут различаться в зависимости от версии libstdc++, но общий принцип понять можно. После установки ватчпоинта запускаем приложения и читаем стектрейс каждого изменения счетчика, потом отсматриваем код (sic!) находим проблему и исправляем. В моем случае объекты не освобождались из таблиц-кешэй и таблиц игровой логики. Надеюсь данный метод поможет вам разобраться с утечками при работе с shared_ptr, и полюбить этот инструмент работы с памятью еще больше. Удачного дебага.