Простой пример TensorFlow

Представляю вашему вниманию простейший пример работы с фреймворком для работы с Deep Learning – TensorFlow. В этом примере мы научим нейросеть определять положительние, отрицательные числа и ноль. Установку TensorFlow и CUDA я поручаю вам, эта задачка действительно не из легких)

Для решения задач классификации используются классификаторы. TensorFlow имеет несколько готовых высокоуровневых классификаторов, которые требуют минимальной конфигурации для работы. Сначала мы потренируем DNNClassifier с помощью датасета с положительными, отрицательными числами и нулем – с корректными “лейблами”. На человеческом уровне датасет представляет из себя набор чисел с результатом классификации (лейблами):

10 – положительное
-22 – отрицательное
0 – ноль
42 – положительное
… другие числа с классификацией

Далее запускается обучение, после окончания которого можно подавать на вход числа которые даже не входили в датасет – нейросеть должна корректно их определять.
Ниже приведен полный код классификатора с генератором датасета для обучения и входных данных:

import tensorflow
import itertools
import random

from time import time

class ClassifiedNumber:
    
    __number = 0
    __classifiedAs = 3
    
    def __init__(self, number):
        
        self.__number = number
        
        if number == 0:
            self.__classifiedAs = 0 # zero
            
        elif number > 0:
            self.__classifiedAs = 1 # positive
            
        elif number < 0:
            self.__classifiedAs = 2 # negative
            
    def number(self):
        return self.__number
    
    def classifiedAs(self):
        return self.__classifiedAs
    
def classifiedAsString(classifiedAs):
    
    if classifiedAs == 0:
        return "Zero"
    
    elif classifiedAs == 1:
        return "Positive"
    
    elif classifiedAs == 2:
        return "Negative"

def trainDatasetFunction():
    
    trainNumbers = []
    trainNumberLabels = []
    
    for i in range(-1000, 1001):    
        number = ClassifiedNumber(i)
        trainNumbers.append(number.number())
        trainNumberLabels.append(number.classifiedAs())
    
    return ( {"number" : trainNumbers } , trainNumberLabels )

def inputDatasetFunction():
    
    global randomSeed
    random.seed(randomSeed) # to get same result
    
    numbers = []
    
    for i in range(0, 4):
        numbers.append(random.randint(-9999999, 9999999))
    
    return {"number" : numbers }
    
def main():
    
    print("TensorFlow Positive-Negative-Zero numbers classifier test by demensdeum 2017 (demensdeum@gmail.com)")
    
    maximalClassesCount = len(set(trainDatasetFunction()[1])) + 1
    
    numberFeature = tensorflow.feature_column.numeric_column("number")
    classifier = tensorflow.estimator.DNNClassifier(feature_columns = [numberFeature], hidden_units = [10, 20, 10], n_classes = maximalClassesCount)
    generator = classifier.train(input_fn = trainDatasetFunction, steps = 1000).predict(input_fn = inputDatasetFunction)
    
    inputDataset = inputDatasetFunction()
    
    results = list(itertools.islice(generator, len(inputDatasetFunction()["number"])))
    
    i = 0
    for result in results:
        print("number: %d classified as %s" % (inputDataset["number"][i], classifiedAsString(result["class_ids"][0])))
        i += 1

randomSeed = time()

main()

Все начинается в методе main(), мы задаем числовую колонку с которой будет работать классификатор – tensorflow.feature_column.numeric_column(“number”) далее задаются параметры классификатора. Описывать текущие аргументы инициализации бесполезно, так как API меняется каждый день, и обязательно нужно смотреть документацию именно установленной версии TensorFlow, не полагаться на устаревшие мануалы.

Далее запускается обучение с указанием на функцию которая возвращает датасет из чисел от -1000 до 1000 (trainDatasetFunction), с правильной классификацией этих чисел по признаку положительного, отрицательного либо нуля. Следом подаем на вход числа которых не было в обучающем датасете – случайные от -9999999 до 9999999 (inputDatasetFunction) для их классификации.

В финале запускаем итерации по количеству входных данных (itertools.islice) печатаем результат, запускаем и удивляемся:

number: 4063470 classified as Positive
number: 6006715 classified as Positive
number: -5367127 classified as Negative
number: -7834276 classified as Negative

iT’S ALIVE

Честно говоря я до сих пор немного удивлен что классификатор *понимает* даже те числа которым я его не обучал. Надеюсь в дальнейшем я разберусь более подробно с темой машинного обучения и будут еще туториалы.

GitLab:
https://gitlab.com/demensdeum/MachineLearning

Ссылки:
https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html
https://www.tensorflow.org/versions/master/api_docs/python/tf/estimator/DNNClassifier

Ломаем Bitcoin

Данная заметка не является призывом к действию, здесь я опишу слабые и потенциально опасные стороны биткоина и технологии блокчейн.

Уязвимый центр

Принцип работы биткоина и блокчейна заключается в хранении, изменении общей базы данных, полная копия которой хранится у каждого участника сети. Система выглядит децентрализованной, т.к. нет единой организации/сервера на котором хранится база данных. Также децентрализованность выдается за главный плюс блокчейна, дает гарантию что ничего не случится с вашими биткоинами без вашего ведома.


Принцип блок-чума от Елкина

Для того чтобы блокчейн работал, нужно сделать так чтобы каждый пользователь скачивал последнюю копию базы данных блокчейна, и работал с ней по определенным правилам. К таким правилам относится реализация принципа майнинга биткоина, получение процента от каждой транзакции при подтверждении (transaction fee) передачи средств с одного кошелька на другой. Пользователь не может нарисовать себе 1000000 биткоинов и купить на них что-то, т.к. у других пользователей количество денег на его счету будет неизменным. Также исключен вариант со снятием средств с чужого кошелька только внутри своей базы данных т.к. это изменение не будет отражено у других пользователей биткоина, и будет проигнорировано.
Уязвимость текущей реализации заключается в том что биткоин кошелек находится на сервере github что полностью перекрывает рекламные лозунги о децентрализации. Без загрузки кошелька из единого центра – сайта разработчика, невозможно работать с биткоином, тоесть в любой момент разработчики имеют полный контроль над сетью. Таким образом, сама технология блокчейн является децентрализованной, но клиент для работы с сетью загружается из единого центра.
Сценарий атаки  – допустим в кошелек добавлен код для снятия всех средств и обналичивания на счет третьих лиц, после этого любой пользователь последней версии кошелька потеряет все биткоины автоматически (без возможности восстановления). Сомневаюсь что многие владельцы кошелька проверяют и собирают его из исходного кода, поэтому последствия такой атаки затронут большинство пользователей.

Решает большинство

Блокчейн является децентрализованной p2p сетью, подтверждением всех операций занимаются сами пользователи в автоматическом режиме. Сценарий атаки  – необходимо получить 51% сети для того чтобы игнорировать подтверждения оставшихся 49%, после этого атакующий получает полный контроль над биткоином/блокчейном. Этого можно добиться подключив вычислительные мощности перекрывающие остальных. Этот сценарий атаки известен как 51% attack.

Угадай меня если сможешь

При первом запуске кошелька, компьютер генерирует пару – приватный и публичный ключ для обеспечения своей корректной работы. Уникальность данных ключей крайне высока, однако есть вариант сгенерировать ключи с помощью кодового слова – так называемый “brain wallet“. Человек хранит ключи у себя в голове, ему не нужно делать бекап файла wallet.dat, т.к. в любой момент ключи можно будет перегенерить с помощью данного кодового слова. Сценарий атаки – злоумышленник подбирает или узнает кодовое слово, генерирует пару приватный-публичный ключ и получает контроль над кошельком.

Просто скопируй

Пара приватный-публичный ключ содержится в файле wallet.dat. Любое программное обеспечение имеющее доступ к данному файлу – имеет доступ к кошельку биткоин. Защитой от такого нападения служит добавление кодового слова, которое должен будет помнить и вводить пользователь, для всех операций с кошельком. После добавления кодового слова, злоумышленнику нужно будет иметь wallet.dat и кодовое слово для получения полного контроля.
Также стоит добавить что при вводе кодового слова оно попадает в память компьютера, таким образом любые уязвимости аппаратные и/или программые позволяющие читать *чужую* память позволят прочитать и это кодовое слово вирусному программному обеспечению.

Ошибка системы

Взлом алгоритмов шифрования биткоина моментально приведет к его смерти. Допустим в реализации алгоритмов допущена ошибка, злоумышленник нашедший ее получает либо полный, либо частичный контроль над блокчейном. Также алгоритмы шифрования используемые в биткоине не защищены от взлома с помощью будущих квантовых компьютеров, их появление и реализация квантовых алгоритмов – поставит крест на текущей реализации биткоина. Однако это может быть решено с помощью перехода на постквантовые алгоритмы шифрования.

Прототип Death Mask для Windows

Видео:

Версия для Windows:
http://demensdeum.com/games/deathMask/prototype/DeathMaskPrototype.exe

Пользователи Linux и OS X могут собрать игру из исходников:
https://github.com/demensdeum/Death-Mask

Дальше я буду добавлять геймплейные элементы, освещение, анимацию.

Nixenv консольные утилиты Linux для Windows

Я собрал свою альтернативу MSYS, данный набор включает в себя утилиты coretools + git + cmake + make + добавляет msvs msbuild в переменную окружения PATH. Данный набор приложений необходим тем разработчикам, которые привыкли к разработке на платформе Linux, и им необходимо собирать приложение под Windows из командной строки с использованием Microsoft Visual Studio. Скачать:

https://www.mediafire.com/file/s5yf75blfslkbym/nixenv.exe

https://www.4shared.com/file/QyjJXBaJca/nixenv.html

Установите, измените пути в файле nixenv.bat и запускайте его.

Flame Steel Battle Axe

С сегодняшнего дня я начинаю разработку редактора для игрового фреймворка – Flame Steel Battle Axe.

Редактор позволить редактировать сцены для игрового фреймворка Flame Steel Game Toolkit.
Я выбрал относительно молодой язык Kotlin на базе Java, для того чтобы опробовать его в боевых условиях.

Можете следить за процессом в репозитории:
https://github.com/demensdeum/FlameSteelBattleAxe

WebGL + SDL + Emscripten

В итоге я портировал Мику на WebGL, с помощью SDL 1 и Emscripten.

Дальше я опишу что нужно было изменить в коде чтобы сборка в JavaScript завершилась успешно.

  1. Использовать SDL 1 вместо SDL 2. На данный момент существует порт SDL 2 для emscripten, однако использовать встроенный в emscripten SDL 1 я посчитал более целесообразным. Инициализация контекста происходит не в окне, а с помощью SDL_SetVideoMode и флага SDL_OPENGL. Отрисовка буфера производится командой SDL_GL_SwapBuffers()
  2. Из-за особенностей выполения циклов в JavaScript – рендеринг вынесен в отдельную функцию и его периодический вызов проставляется с помощью функции emscripten_set_main_loop
  3. Также сборку нужно осуществлять с ключом “-s FULL_ES2=1
  4. Пришлось отказаться от библиотеки assimp, от загрузки модели из файловой системы, от загрузки текстуры с диска. Все необходимые буферы были прогружены на деcктоп версии, и прокинуты в c-header файл для сборки с помощью emscripten.

Код:
https://github.com/demensdeum/OpenGLES3-Experiments/tree/master/9-sdl-gles-obj-textured-assimp-miku-webgl/mikuWebGL

Статьи:
http://blog.scottlogic.com/2014/03/12/native-code-emscripten-webgl-simmer-gently.html
https://kripken.github.io/emscripten-site/docs/porting/multimedia_and_graphics/OpenGL-support.html

Модель:
https://sketchfab.com/models/7310aaeb8370428e966bdcff414273e7