ヒープソート – ピラミッドソート。アルゴリズムの時間計算量 – O(n log n)、速いですよね?私はこれを、落ちてくる小石の選別と呼んでいます。これを説明する最も簡単な方法は視覚的に説明することだと思います。
入力は、次のような数値のリストです。
5、0、7、2、3、9、4
左から右に、データ構造、つまりバイナリ ツリー、または私がそれを呼んでいる – が作成されます。ピラミッド。ピラミッド要素には最大 2 つの子要素を含めることができますが、最上位の要素は 1 つだけです。
バイナリ ツリーを作成しましょう:
⠀⠀5
⠀0⠀7
2 3 9 4
ピラミッドを長い間見てみると、これらは配列からの単なる数値であり、次々に来て、各フロアの要素の数が 2 倍になっていることがわかります。
次に、楽しい作業が始まります。小石を落とす方法 (heapify) を使用して、ピラミッドを下から上に並べ替えましょう。最終階(2 3 9 4)から並べ替えを開始することもできますが、意味がありません。以下に転落する可能性のある床はありません。
したがって、最後から 2 番目のフロア (0 7) から要素をドロップし始めます。
⠀⠀5
⠀0⠀7
2 3 9 4
最初に該当する要素が右から選択されます。この場合は 7 です。次に、その下にあるものを調べます。その下には 9 と 4 があり、9 は 4 より大きく、9 はより大きいです。セブン! 7 を 9 に落とし、9 を持ち上げて 7 の位置に置きます。
⠀⠀5
⠀0⠀9
2 3 7 4
次に、7 には下に落ちるところがないことがわかり、左側の最後から 2 番目の階にある番号 0 に進みます。
⠀⠀5
⠀0⠀9
2 3 7 4
その下にあるものを見てみましょう – 2 と 3、2 は 3 より小さく、3 は 0 より大きいので、0 と 3 を交換します。
⠀⠀5
⠀3⠀9
2 0 7 4
フロアの端に到達したら、上のフロアに行き、可能であればそこにすべてを落としてください。
結果はデータ構造、つまりヒープ、つまり最大ヒープになります。一番上にあるのは最大の要素です。
⠀⠀9
⠀3⠀7
2 0 5 4
これを配列表現に戻すと、リストが得られます。
[9、3、7、2、0、5、4]
このことから、最初と最後の要素を交換することで、最終的な並べ替え位置の最初の数値が得られる、つまり 9 が並べ替えられたリストの最後にあるはずであると結論付けることができ、場所を入れ替えます。
[4、3、7、2、0、5、9]
二分木を見てみましょう:
⠀⠀4
⠀3⠀7
2 0 5 9
結果は、ツリーの下の部分がソートされた状況になります。必要なのは、4 を正しい位置にドロップし、アルゴリズムを繰り返すだけです。ただし、すでにソートされている数値、つまり 9 は考慮しません。
⠀⠀4
⠀3⠀7
2 0 5 9
⠀⠀7
⠀3⠀4
2 0 5 9
⠀⠀7
⠀3⠀5
2 0 4 9
4 を落とした後、9 – の次に大きな数字を上げたことが判明しました。 7. ソートされていない最後の数字 (4) と最大の数字 (7) を交換します
⠀⠀4
⠀3⠀5
2 0 7 9
正しい最終位置に 2 つの数値があることがわかりました。
4、3、5、2、0、7、9
次に、既に並べ替えられたアルゴリズムを無視して並べ替えアルゴリズムを繰り返します。最終的には ヒープ タイプ:
⠀⠀0
⠀2⠀3
4 5 7 9
またはリストとして:
0、2、3、4、5、7、9
実装
アルゴリズムは通常、次の 3 つの機能に分割されます。
<オル>
ヒープは、heapify 関数を使用してバイナリ ツリーの最後から 2 番目の行を右から左に配列の末尾まで走査することによって作成されます。次にサイクルでは、最初の数値の置換が行われ、その後、最初の要素が配置されるか、その位置に残ります。その結果、最大の要素が 1 位に配置され、参加者が 1 人減ってサイクルが繰り返されます。各パスの後、ソートされた数値がリストの最後に残ります。
Ruby でのヒープソートの例:
module Colors
BLUE = "\033[94m"
RED = "\033[31m"
STOP = "\033[0m"
end
def heapsort(rawNumbers)
numbers = rawNumbers.dup
def swap(numbers, from, to)
temp = numbers[from]
numbers[from] = numbers[to]
numbers[to] = temp
end
def heapify(numbers)
count = numbers.length()
lastParentNode = (count - 2) / 2
for start in lastParentNode.downto(0)
siftDown(numbers, start, count - 1)
start -= 1
end
if DEMO
puts "--- heapify ends ---"
end
end
def siftDown(numbers, start, rightBound)
cursor = start
printBinaryHeap(numbers, cursor, rightBound)
def calculateLhsChildIndex(cursor)
return cursor * 2 + 1
end
def calculateRhsChildIndex(cursor)
return cursor * 2 + 2
end
while calculateLhsChildIndex(cursor) <= rightBound
lhsChildIndex = calculateLhsChildIndex(cursor)
rhsChildIndex = calculateRhsChildIndex(cursor)
lhsNumber = numbers[lhsChildIndex]
biggerChildIndex = lhsChildIndex
if rhsChildIndex <= rightBound
rhsNumber = numbers[rhsChildIndex]
if lhsNumber < rhsNumber
biggerChildIndex = rhsChildIndex
end
end
if numbers[cursor] < numbers[biggerChildIndex]
swap(numbers, cursor, biggerChildIndex)
cursor = biggerChildIndex
else
break
end
printBinaryHeap(numbers, cursor, rightBound)
end
printBinaryHeap(numbers, cursor, rightBound)
end
def printBinaryHeap(numbers, nodeIndex = -1, rightBound = -1)
if DEMO == false
return
end
perLineWidth = (numbers.length() * 4).to_i
linesCount = Math.log2(numbers.length()).ceil()
xPrinterCount = 1
cursor = 0
spacing = 3
for y in (0..linesCount)
line = perLineWidth.times.map { " " }
spacing = spacing == 3 ? 4 : 3
printIndex = (perLineWidth / 2) - (spacing * xPrinterCount) / 2
for x in (0..xPrinterCount - 1)
if cursor >= numbers.length
break
end
if nodeIndex != -1 && cursor == nodeIndex
line[printIndex] = "%s%s%s" % [Colors::RED, numbers[cursor].to_s, Colors::STOP]
elsif rightBound != -1 && cursor > rightBound
line[printIndex] = "%s%s%s" % [Colors::BLUE, numbers[cursor].to_s, Colors::STOP]
else
line[printIndex] = numbers[cursor].to_s
end
cursor += 1
printIndex += spacing
end
print line.join()
xPrinterCount *= 2
print "\n"
end
end
heapify(numbers)
rightBound = numbers.length() - 1
while rightBound > 0
swap(numbers, 0, rightBound)
rightBound -= 1
siftDown(numbers, 0, rightBound)
end
return numbers
end
numbersCount = 14
maximalNumber = 10
numbers = numbersCount.times.map { Random.rand(maximalNumber) }
print numbers
print "\n---\n"
start = Time.now
sortedNumbers = heapsort(numbers)
finish = Time.now
heapSortTime = start - finish
start = Time.now
referenceSortedNumbers = numbers.sort()
finish = Time.now
referenceSortTime = start - finish
print "Reference sort: "
print referenceSortedNumbers
print "\n"
print "Reference sort time: %f\n" % referenceSortTime
print "Heap sort: "
print sortedNumbers
print "\n"
if DEMO == false
print "Heap sort time: %f\n" % heapSortTime
else
print "Disable DEMO for performance measure\n"
end
if sortedNumbers != referenceSortedNumbers
puts "Validation failed"
exit 1
else
puts "Validation success"
exit 0
end
このアルゴリズムは視覚化しないと理解しにくいため、最初にバイナリ ツリーの現在のビューを出力する関数を作成することをお勧めします。
リンク
https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/heapsort/heapsort.rb
ソース
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://www.youtube.com/watch?v=LbB357_RwlY
https://habr.com/ru/company/ otus/blog/460087/
https://ru.wikipedia.org/wiki/Pyramid_sort
https://neerc.ifmo.ru/wiki /index.php?title=ヒープソート
https://wiki5.ru/wiki/Heapsort
https://wiki.c2.com/?HeapSort p>
https://ru.wikipedia.org/wiki/Tree (データ構造)
https://ru.wikipedia.org/wiki/Heap (データ構造)
https://www.youtube.com/watch?v=2DmK_H7IdTo
https://www.youtube.com/watch?v=kU4KBD4NFtw
https://www.youtube.com/watch?v=DU1uG5310x0
https://www.youtube.com/watch?v =BzQGPA_v-vc
https://www.geeksforgeeks.org/バイナリヒープの配列表現/
https://habr.com/ru/post/112222/ a>
https://www.cs.usfca. edu/~galles/visualization/BST.html
https://www.youtube.com/watch?v=EQzqHWtsKq4
https://ru.wikibrief.org/wiki/Heapsort
https://www.youtube.com/watch?v=GUUpmrTnNbw