Radixsort

Radix-Sortierung – Basissortierung. Der Algorithmus ähnelt der Zählsortierung darin, dass es keinen Vergleich von Elementen gibt; stattdessen werden Elemente *Zeichen für Zeichen* in *Buckets* (Buckets) gruppiert, der Bucket wird anhand des Index des aktuellen Zahlenzeichens ausgewählt. Zeitkomplexität – O(nd).

Es funktioniert ungefähr so:

  • Die Eingabe erfolgt aus den Zahlen 6, 12, 44, 9
  • Wir werden 10 Buckets mit Listen (0-9) erstellen, in die wir Zahlen Stück für Stück hinzufügen/sortieren.

Weiter:

  1. Starten Sie eine Schleife mit Zähler i bis zur maximalen Anzahl von Zeichen in der Zahl
  2. Durch den Index i von rechts nach links erhalten wir ein Symbol für jede Zahl; wenn es kein Symbol gibt, dann gehen wir davon aus, dass es Null ist
  3. Konvertieren Sie das Symbol in eine Zahl
  4. Wählen Sie einen Bucket nach Indexnummer aus und geben Sie dort die ganze Zahl ein
  5. Nachdem Sie mit der Suche durch die Zahlen fertig sind, wandeln Sie alle Buckets wieder in eine Zahlenliste um
  6. Erhalten Sie Zahlen nach Rang sortiert
  7. Wiederholen Sie den Vorgang, bis alle Ziffern verschwunden sind

Beispiel für Radix-Sortierung in Scala:


import scala.util.Random.nextInt



object RadixSort {

    def main(args: Array[String]) = {

        var maxNumber = 200

        var numbersCount = 30

        var maxLength = maxNumber.toString.length() - 1



        var referenceNumbers = LazyList.continually(nextInt(maxNumber + 1)).take(numbersCount).toList

        var numbers = referenceNumbers

        

        var buckets = List.fill(10)(ListBuffer[Int]())



        for( i <- 0 to maxLength) { numbers.foreach( number => {

                    var numberString = number.toString

                    if (numberString.length() > i) {

                        var index = numberString.length() - i - 1

                        var character = numberString.charAt(index).toString

                        var characterInteger = character.toInt  

                        buckets.apply(characterInteger) += number

                    }

                    else {

                        buckets.apply(0) += number

                    }

                }

            )

            numbers = buckets.flatten

            buckets.foreach(x => x.clear())

        }

        println(referenceNumbers)

        println(numbers)

        println(s"Validation result: ${numbers == referenceNumbers.sorted}")

    }

}

Der Algorithmus verfügt auch über eine Version zur parallelen Ausführung, beispielsweise auf einer GPU; Es gibt auch eine Möglichkeit zum Sortieren von Bits, die sehr interessant und wirklich atemberaubend sein muss!

Links

https://gitlab .com/demensdeum/algorithms/-/blob/master/sortAlgorithms/radixSort/radixSort.scala

Quellen

https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%80%D0%B0%D0%B7%D1%80%D1%8F%D 0%B4%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0% BA%D0%B0
https://www.geeksforgeeks.org/radix-sort/

https://www.youtube.com/watch?v=toAlAJKojos

https://github.com/gyatskov/radix-sort

Haufensort

Heapsort – Pyramidensortierung. Zeitliche Komplexität des Algorithmus – O(n log n), schnell, oder? Ich würde das Sortieren das Sortieren fallender Kieselsteine ​​nennen. Es scheint mir, dass man es am einfachsten visuell erklären kann.

Die Eingabe ist eine Liste von Zahlen, zum Beispiel:
5, 0, 7, 2, 3, 9, 4

Von links nach rechts wird eine Datenstruktur erstellt – ein Binärbaum, oder wie ich es nenne – Pyramide. Pyramidenelemente können maximal zwei untergeordnete Elemente, aber nur ein oberstes Element haben.

Lassen Sie uns einen Binärbaum erstellen:
⠀⠀5
⠀0⠀7
2 3 9 4

Wenn Sie die Pyramide längere Zeit betrachten, können Sie erkennen, dass es sich nur um Zahlen aus einer Reihe handelt, die nacheinander auftauchen. Die Anzahl der Elemente in jeder Etage wird mit zwei multipliziert.

Als nächstes beginnt der Spaß: Sortieren wir die Pyramide von unten nach oben mit der Methode der fallenden Kieselsteine ​​(aufhäufen). Mit dem Sortieren könnte man ab der letzten Etage beginnen (2 3 9 4), aber es hat keinen Sinn, weil Es gibt keine Etage darunter, in die man fallen könnte.

Daher beginnen wir, Elemente aus der vorletzten Etage (0 7) fallen zu lassen
⠀⠀5
⠀0⠀7
2 3 9 4

Das erste fallende Element wird von rechts ausgewählt, in unserem Fall ist es 7, dann schauen wir uns an, was darunter liegt, und darunter sind 9 und 4, neun ist größer als vier, und auch neun ist größer als Sieben! Wir lassen 7 auf 9 fallen und heben 9 auf Platz 7.
⠀⠀5
⠀0⠀9
2 3 7 4

Als nächstes verstehen wir, dass die Sieben nirgendwo tiefer fallen kann, und gehen weiter zur Zahl 0, die sich im vorletzten Stockwerk auf der linken Seite befindet:
⠀⠀5
0⠀9
2 3 7 4

Mal sehen, was sich darunter verbirgt – 2 und 3, zwei ist kleiner als drei, drei ist mehr als null, also vertauschen wir null und drei:
⠀⠀5
⠀3⠀9
2 0 7 4

Wenn Sie das Ende der Etage erreichen, gehen Sie in die darüber liegende Etage und lassen Sie dort, wenn möglich, alles ab.
Das Ergebnis ist eine Datenstruktur – ein Heap, nämlich Max Heap, weil Oben ist das größte Element:
⠀⠀9
⠀3⠀7
2 0 5 4

Wenn Sie es in eine Array-Darstellung zurückführen, erhalten Sie eine Liste:
[9, 3, 7, 2, 0, 5, 4]

Daraus können wir schließen, dass wir durch Vertauschen des ersten und letzten Elements die erste Zahl an der endgültigen sortierten Position erhalten, nämlich 9 sollte am Ende der sortierten Liste stehen, Plätze vertauschen:
[4, 3, 7, 2, 0, 5, 9]

Sehen wir uns einen Binärbaum an:
⠀⠀4
⠀3⠀7
2 0 5 9

Das Ergebnis ist eine Situation, in der der untere Teil des Baums sortiert ist. Sie müssen lediglich 4 an der richtigen Position ablegen, den Algorithmus wiederholen, aber die bereits sortierten Zahlen, nämlich 9, nicht berücksichtigen:
⠀⠀4
⠀3⠀7
2 0 5 9

⠀⠀7
⠀3⠀4
2 0 5 9

⠀⠀7
⠀3⠀5
2 0 4 9

Es stellte sich heraus, dass wir, nachdem wir 4 verloren hatten, die nächstgrößte Zahl nach 9 erhöht hatten – 7. Vertauschen Sie die letzte unsortierte Zahl (4) und die größte Zahl (7)
⠀⠀4
⠀3⠀5
2 0 7 9

Es stellt sich heraus, dass wir jetzt zwei Zahlen an der richtigen Endposition haben:
4, 3, 5, 2, 0, 7, 9

Als nächstes wiederholen wir den Sortieralgorithmus und ignorieren die bereits sortierten. Am Ende erhalten wir ein Heap Typ:
⠀⠀0
⠀2⠀3
4 5 7 9

Oder als Liste:
0, 2, 3, 4, 5, 7, 9

Implementierung

Der Algorithmus ist normalerweise in drei Funktionen unterteilt:

  1. Einen Heap erstellen
  2. Sifting-Algorithmus (Heapify)
  3. Ersetzen des letzten unsortierten Elements durch das erste

Der Heap wird erstellt, indem die vorletzte Zeile des Binärbaums mithilfe der Heapify-Funktion von rechts nach links bis zum Ende des Arrays durchlaufen wird. Als nächstes im Zyklus erfolgt die erste Ersetzung der Zahlen, danach fällt/bleibt das erste Element an Ort und Stelle, wodurch das größte Element an die erste Stelle fällt, der Zyklus wird mit einer Verringerung der Teilnehmerzahl um eins wiederholt, weil Nach jedem Durchlauf bleiben sortierte Zahlen am Ende der Liste.

Heapsort-Beispiel in Ruby:






module Colors



    BLUE = "\033[94m"



    RED = "\033[31m"



    STOP = "\033[0m"



end







def heapsort(rawNumbers)



    numbers = rawNumbers.dup







    def swap(numbers, from, to)



        temp = numbers[from]



        numbers[from] = numbers[to]



        numbers[to] = temp



    end







    def heapify(numbers)



        count = numbers.length()



        lastParentNode = (count - 2) / 2







        for start in lastParentNode.downto(0)



            siftDown(numbers, start, count - 1)



            start -= 1 



        end







        if DEMO



            puts "--- heapify ends ---"



        end



    end







    def siftDown(numbers, start, rightBound)      



        cursor = start



        printBinaryHeap(numbers, cursor, rightBound)







        def calculateLhsChildIndex(cursor)



            return cursor * 2 + 1



        end







        def calculateRhsChildIndex(cursor)



            return cursor * 2 + 2



        end            







        while calculateLhsChildIndex(cursor) <= rightBound



            lhsChildIndex = calculateLhsChildIndex(cursor)



            rhsChildIndex = calculateRhsChildIndex(cursor)







            lhsNumber = numbers[lhsChildIndex]



            biggerChildIndex = lhsChildIndex







            if rhsChildIndex <= rightBound



                rhsNumber = numbers[rhsChildIndex]



                if lhsNumber < rhsNumber



                    biggerChildIndex = rhsChildIndex



                end



            end







            if numbers[cursor] < numbers[biggerChildIndex]



                swap(numbers, cursor, biggerChildIndex)



                cursor = biggerChildIndex



            else



                break



            end



            printBinaryHeap(numbers, cursor, rightBound)



        end



        printBinaryHeap(numbers, cursor, rightBound)



    end







    def printBinaryHeap(numbers, nodeIndex = -1, rightBound = -1)



        if DEMO == false



            return



        end



        perLineWidth = (numbers.length() * 4).to_i



        linesCount = Math.log2(numbers.length()).ceil()



        xPrinterCount = 1



        cursor = 0



        spacing = 3



        for y in (0..linesCount)



            line = perLineWidth.times.map { " " }



            spacing = spacing == 3 ? 4 : 3



            printIndex = (perLineWidth / 2) - (spacing * xPrinterCount) / 2



            for x in (0..xPrinterCount - 1)



                if cursor >= numbers.length



                    break



                end



                if nodeIndex != -1 && cursor == nodeIndex



                    line[printIndex] = "%s%s%s" % [Colors::RED, numbers[cursor].to_s, Colors::STOP]



                elsif rightBound != -1 && cursor > rightBound



                    line[printIndex] = "%s%s%s" % [Colors::BLUE, numbers[cursor].to_s, Colors::STOP]



                else



                    line[printIndex] = numbers[cursor].to_s



                end



                cursor += 1



                printIndex += spacing



            end



            print line.join()



            xPrinterCount *= 2           



            print "\n"            



        end



    end







    heapify(numbers)



    rightBound = numbers.length() - 1







    while rightBound > 0



        swap(numbers, 0, rightBound)   



        rightBound -= 1



        siftDown(numbers, 0, rightBound)     



    end







    return numbers



end







numbersCount = 14



maximalNumber = 10



numbers = numbersCount.times.map { Random.rand(maximalNumber) }



print numbers



print "\n---\n"







start = Time.now



sortedNumbers = heapsort(numbers)



finish = Time.now



heapSortTime = start - finish







start = Time.now



referenceSortedNumbers = numbers.sort()



finish = Time.now



referenceSortTime = start - finish







print "Reference sort: "



print referenceSortedNumbers



print "\n"



print "Reference sort time: %f\n" % referenceSortTime



print "Heap sort:      "



print sortedNumbers



print "\n"



if DEMO == false



    print "Heap sort time:      %f\n" % heapSortTime



else



    print "Disable DEMO for performance measure\n"



end







if sortedNumbers != referenceSortedNumbers



    puts "Validation failed"



    exit 1



else



    puts "Validation success"



    exit 0



end



Dieser Algorithmus ist ohne Visualisierung nicht leicht zu verstehen, daher empfehle ich als Erstes, eine Funktion zu schreiben, die die aktuelle Ansicht des Binärbaums druckt.

Links

https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/heapsort/heapsort.rb

Quellen

http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://www.youtube.com/watch?v=LbB357_RwlY

https://habr.com/ru/company/ otus/blog/460087/

https://ru.wikipedia.org/wiki/Pyramid_sort

https://neerc.ifmo.ru/wiki /index.php?title=Heap_sort

https://wiki5.ru/wiki/Heapsort

https://wiki.c2.com/?HeapSort

https://ru.wikipedia.org/wiki/Tree (Datenstruktur)

https://ru.wikipedia.org/wiki/Heap (Datenstruktur)

https://www.youtube.com/watch?v=2DmK_H7IdTo

https://www.youtube.com/watch?v=kU4KBD4NFtw

https://www.youtube.com/watch?v=DU1uG5310x0

https://www.youtube.com/watch?v =BzQGPA_v-vc

https://www.geeksforgeeks.org/ array-representation-of-binary-heap/

https://habr.com/ru/post/112222/

https://www.cs.usfca. edu/~galles/visualization/BST.html

https://www.youtube.com/watch?v=EQzqHWtsKq4

https://medium.com/@dimko1/%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC% D1 %8B-%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B8-heapsort-796ba965018b

https://ru.wikibrief.org/wiki/Heapsort

https://www.youtube.com/watch?v=GUUpmrTnNbw

Bumblebee All Troubles

Recently, it turned out that users of modern Nvidia GPUs under Arch Linux do not need to use the bumblebee package at all, for example, for me it did not detect an external monitor when connected. I recommend removing the bumblebee package and all related packages, and installing prime using the instructions on the Arch Wiki.
Next, to launch all games on Steam and 3D applications, add prime-run, for Steam this is done like this prime-run %command% in additional launch options.
To check the correctness, you can use glxgears, prime-run glxgears.
https://bbs.archlinux.org/viewtopic.php? pid=2048195#p2048195

Quicksort

Quicksort ist ein Sortieralgorithmus nach dem Prinzip „Teile und herrsche“. Rekursiv, Stück für Stück, analysieren wir das Zahlenarray, ordnen die Zahlen ausgehend vom ausgewählten Referenzelement in kleinerer und größerer Reihenfolge an und fügen das Referenzelement selbst in den Cutoff zwischen ihnen ein. Nach mehreren rekursiven Iterationen erhalten Sie eine sortierte Liste. Zeitkomplexität O(n2).

Schema:

  1. Wir beginnen damit, eine Liste von Elementen von außen zu erhalten, die Sortiergrenzen. Im ersten Schritt werden die Sortiergrenzen von Anfang bis Ende festgelegt.
  2. Überprüfen Sie, dass sich die Start- und Endgrenzen nicht überschneiden. Wenn dies passiert, ist es Zeit, den Vorgang abzuschließen
  3. Wählen Sie ein Element aus der Liste aus und nennen Sie es Pivot
  4. Bewegen Sie es am letzten Index nach rechts bis zum Ende, damit es nicht im Weg ist
  5. Erstellen Sie einen Zähler mit *kleineren Zahlen*, die immer noch Null sind
  6. Durchlaufen Sie die Liste von links nach rechts, bis einschließlich zum letzten Index, an dem sich das Referenzelement befindet
  7. Wir vergleichen jedes Element mit dem Referenzelement
  8. Wenn er kleiner als der Referenzwert ist, tauschen wir ihn entsprechend dem Index des Zählers kleinerer Zahlen aus. Erhöhen Sie den Zähler kleinerer Zahlen.
  9. Wenn die Schleife das Stützelement erreicht, halten wir an und tauschen das Stützelement mit dem Element entsprechend dem Zähler der kleineren Zahlen aus.
  10. Wir führen den Algorithmus separat für den kleineren linken Teil der Liste und separat für den größeren rechten Teil der Liste aus.
  11. Infolgedessen werden alle rekursiven Iterationen aufgrund des Eincheckpunkts 2 angehalten
  12. Erhalten Sie eine sortierte Liste

Quicksort wurde vom Wissenschaftler Charles Anthony Richard Hoare an der Moskauer Staatsuniversität erfunden. Nachdem er Russisch gelernt hatte, studierte er Computerübersetzung sowie Wahrscheinlichkeitstheorie an der Kolmogorov-Schule. 1960 verließ er aufgrund der politischen Krise die Sowjetunion.

Beispielimplementierung in Rust:


use rand::Rng;

fn swap(numbers: &mut [i64], from: usize, to: usize) {
    let temp = numbers[from];
    numbers[from] = numbers[to];
    numbers[to] = temp;
}

fn quicksort(numbers: &mut [i64], left: usize, right: usize) {
    if left >= right {
        return
    }
    let length = right - left;
    if length <= 1 {
        return
    }
    let pivot_index = left + (length / 2);
    let pivot = numbers[pivot_index];

    let last_index = right - 1;
    swap(numbers, pivot_index, last_index);

    let mut less_insert_index = left;

    for i in left..last_index {
        if numbers[i] < pivot {
            swap(numbers, i, less_insert_index);
            less_insert_index += 1;
        }
    }
    swap(numbers, last_index, less_insert_index);
    quicksort(numbers, left, less_insert_index);
    quicksort(numbers, less_insert_index + 1, right);
}

fn main() {
    let mut numbers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    let mut reference_numbers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

    let mut rng = rand::thread_rng();
    for i in 0..numbers.len() {
        numbers[i] = rng.gen_range(-10..10);
        reference_numbers[i] = numbers[i];
    }

    reference_numbers.sort();

  println!("Numbers           {:?}", numbers);
  let length = numbers.len();
  quicksort(&mut numbers, 0, length);
  println!("Numbers           {:?}", numbers);
  println!("Reference numbers {:?}", reference_numbers);

  if numbers != reference_numbers {
    println!("Validation failed");
    std::process::exit(1);
  }
  else {
    println!("Validation success!");
    std::process::exit(0);
  }
}

Wenn nichts klar ist, empfehle ich Ihnen, sich das Video von Rob Edwards von der University of San Diego anzusehen https://www.youtube.com/watch?v=ZHVk2blR45Q Es zeigt ganz einfach Schritt für Schritt das Wesen und die Implementierung des Algorithmus.

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/quickSort

Quellen

https://www.youtube.com/watch?v =4s-aG6yGGLU
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=Hoixgm4-P4M
https://ru.wikipedia.org/wiki/Быстрая_сортировка
https://www.youtube.com/watch?v=Hoixgm4-P4M
https://www.youtube.com/watch?v=XE4VP_8Y0BU
https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.youtube.com/watch?v=ZHVk2blR45Q
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
https://www.youtube.com/watch?v=4s-aG6yGGLU
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=maibrCbZWKw
https://www.geeksforgeeks.org/quick-sort/
https://www.youtube.com/watch?v=uXBnyYuwPe8

Binäre Einfügungssortierung

Binary Insertion Sort ist eine Variante der Insertion Sort, bei der die Einfügeposition mithilfe der binären Suche ermittelt wird. Die zeitliche Komplexität des Algorithmus beträgt O(n2)

Der Algorithmus funktioniert folgendermaßen:

  1. Eine Schleife beginnt bei Null bis zum Ende der Liste
  2. In der Schleife wird eine Zahl zum Sortieren ausgewählt, die Zahl wird in einer separaten Variablen gespeichert
  3. Die binäre Suche sucht nach dem Index, um diese Zahl gegen die Zahlen auf der linken Seite einzufügen
  4. Sobald der Index gefunden wurde, werden die Zahlen auf der linken Seite beginnend beim Einfügeindex um eine Position nach rechts verschoben. Dabei wird die zu sortierende Nummer gelöscht.
  5. Die zuvor gespeicherte Nummer wird am Einfügeindex eingefügt
  6. Am Ende der Schleife wird die gesamte Liste sortiert

Bei einer binären Suche kann es sein, dass die Nummer nicht gefunden wird und der Index nicht zurückgegeben wird. Aufgrund der Besonderheit der binären Suche wird die Zahl gefunden, die der gesuchten Zahl am nächsten kommt. Um den Index zurückzugeben, müssen Sie ihn mit der gesuchten Zahl vergleichen. Wenn die gesuchte Zahl kleiner ist, sollte die gesuchte Zahl bei sein der Index links, und wenn größer oder gleich, dann rechts.

Go-Code:


import (
	"fmt"
	"math/rand"
	"time"
)

const numbersCount = 20
const maximalNumber = 100

func binarySearch(numbers []int, item int, low int, high int) int {
	for high > low {
		center := (low + high) / 2
		if numbers[center] < item { low = center + 1 } else if numbers[center] > item {
			high = center - 1
		} else {
			return center
		}
	}

	if numbers[low] < item {
		return low + 1
	} else {
		return low
	}
}

func main() {
	rand.Seed(time.Now().Unix())
	var numbers [numbersCount]int
	for i := 0; i < numbersCount; i++ {
		numbers[i] = rand.Intn(maximalNumber)
	}
	fmt.Println(numbers)

	for i := 1; i < len(numbers); i++ { searchAreaLastIndex := i - 1 insertNumber := numbers[i] insertIndex := binarySearch(numbers[:], insertNumber, 0, searchAreaLastIndex) for x := searchAreaLastIndex; x >= insertIndex; x-- {
			numbers[x+1] = numbers[x]
		}
		numbers[insertIndex] = insertNumber
	}
	fmt.Println(numbers)
}

Links

https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/binaryInsertionSort/binaryInsertionSort.go

Quellen

https://www.geeksforgeeks.org/binary-insertion- sort/
https://www.youtube.com/watch?v=-OVB5pOZJug

Muschelsortierung

Shell Sort – eine Variante der Einfügungssortierung mit vorläufiger Kämmung eines Zahlenarrays.

Wir müssen uns daran erinnern, wie die Einfügungssortierung funktioniert:

1. Eine Schleife wird von Null bis zum Ende der Schleife gestartet, wodurch das Array in zwei Teile geteilt wird
2. Für den linken Teil wird eine zweite Schleife gestartet, die Elemente von rechts nach links vergleicht. Das kleinere Element auf der rechten Seite wird gelöscht, bis ein kleineres Element auf der linken Seite gefunden wird
3. Am Ende beider Schleifen erhalten wir eine sortierte Liste

Es war einmal der Informatiker Donald Schell, der sich fragte, wie man den Einfügungssortierungsalgorithmus verbessern könnte. Er kam auch auf die Idee, das Array zunächst in zwei Zyklen zu durchlaufen, jedoch in einem bestimmten Abstand, und den „Kamm“ schrittweise zu verkleinern, bis daraus ein regulärer Einfügungssortierungsalgorithmus wird. Alles ist wirklich so einfach, keine Fallstricke. Zu den beiden oben genannten Zyklen fügen wir einen weiteren hinzu, in dem wir die Größe des „Kamms“ schrittweise reduzieren. Das Einzige, was Sie tun müssen, ist, beim Vergleich den Abstand zu überprüfen, damit er nicht über das Array hinausgeht.

Ein wirklich interessantes Thema ist die Auswahl der Reihenfolge zum Ändern der Vergleichslänge bei jeder Iteration der ersten Schleife. Dies ist deshalb interessant, weil die Leistung des Algorithmus davon abhängt.

Die Tabelle bekannter Optionen und Zeitkomplexität finden Sie hier: https: //en .wikipedia.org/wiki/Shellsort#Gap_sequences

An der Berechnung des idealen Abstands waren verschiedene Personen beteiligt; für sie war dieses Thema offenbar so interessant. Könnten sie nicht einfach Ruby ausführen und den schnellsten sort()-Algorithmus aufrufen?

Im Allgemeinen haben diese seltsamen Leute Dissertationen zum Thema der Berechnung des Abstands/der Lücke des „Kamms“ für den Shell-Algorithmus geschrieben. Ich habe einfach die Ergebnisse ihrer Arbeit verwendet und fünf Arten von Sequenzen überprüft: Hibbard, Knuth-Pratt, Chiura, Sedgwick.

import time
import random
from functools import reduce
import math

DEMO_MODE = False

if input("Demo Mode Y/N? ").upper() == "Y":
    DEMO_MODE = True

class Colors:
    BLUE = '\033[94m'
    RED = '\033[31m'
    END = '\033[0m'

def swap(list, lhs, rhs):
    list[lhs], list[rhs] = list[rhs], list[lhs]
    return list

def colorPrintoutStep(numbers: List[int], lhs: int, rhs: int):
    for index, number in enumerate(numbers):
        if index == lhs:
            print(f"{Colors.BLUE}", end = "")
        elif index == rhs:
            print(f"{Colors.RED}", end = "")
        print(f"{number},", end = "")
        if index == lhs or index == rhs:
            print(f"{Colors.END}", end = "")
        if index == lhs or index == rhs:
            print(f"{Colors.END}", end = "")
    print("\n")
    input(">")

def ShellSortLoop(numbers: List[int], distanceSequence: List[int]):
    distanceSequenceIterator = reversed(distanceSequence)
    while distance:= next(distanceSequenceIterator, None):
        for sortArea in range(0, len(numbers)):
            for rhs in reversed(range(distance, sortArea + 1)):
                lhs = rhs - distance
                if DEMO_MODE:
                    print(f"Distance: {distance}")
                    colorPrintoutStep(numbers, lhs, rhs)
                if numbers[lhs] > numbers[rhs]:
                    swap(numbers, lhs, rhs)
                else:
                    break

def ShellSort(numbers: List[int]):
    global ShellSequence
    ShellSortLoop(numbers, ShellSequence)

def HibbardSort(numbers: List[int]):
    global HibbardSequence
    ShellSortLoop(numbers, HibbardSequence)

def ShellPlusKnuttPrattSort(numbers: List[int]):
    global KnuttPrattSequence
    ShellSortLoop(numbers, KnuttPrattSequence)

def ShellPlusCiuraSort(numbers: List[int]):
    global CiuraSequence
    ShellSortLoop(numbers, CiuraSequence)

def ShellPlusSedgewickSort(numbers: List[int]):
    global SedgewickSequence
    ShellSortLoop(numbers, SedgewickSequence)

def insertionSort(numbers: List[int]):
    global insertionSortDistanceSequence
    ShellSortLoop(numbers, insertionSortDistanceSequence)

def defaultSort(numbers: List[int]):
    numbers.sort()

def measureExecution(inputNumbers: List[int], algorithmName: str, algorithm):
    if DEMO_MODE:
        print(f"{algorithmName} started")
    numbers = inputNumbers.copy()
    startTime = time.perf_counter()
    algorithm(numbers)
    endTime = time.perf_counter()
    print(f"{algorithmName} performance: {endTime - startTime}")

def sortedNumbersAsString(inputNumbers: List[int], algorithm) -> str:
    numbers = inputNumbers.copy()
    algorithm(numbers)
    return str(numbers)

if DEMO_MODE:
    maximalNumber = 10
    numbersCount = 10
else:
    maximalNumber = 10
    numbersCount = random.randint(10000, 20000)

randomNumbers = [random.randrange(1, maximalNumber) for i in range(numbersCount)]

ShellSequenceGenerator = lambda n: reduce(lambda x, _: x + [int(x[-1]/2)], range(int(math.log(numbersCount, 2))), [int(numbersCount / 2)])
ShellSequence = ShellSequenceGenerator(randomNumbers)
ShellSequence.reverse()
ShellSequence.pop()

HibbardSequence = [
    0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095,
    8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575,
    2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727,
    268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
]

KnuttPrattSequence = [
    1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 
    797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 
    1743392200, 5230176601, 15690529804, 47071589413
]

CiuraSequence = [
            1, 4, 10, 23, 57, 132, 301, 701, 1750, 4376, 
            10941, 27353, 68383, 170958, 427396, 1068491, 
            2671228, 6678071, 16695178, 41737946, 104344866, 
            260862166, 652155416, 1630388541
]

SedgewickSequence = [
            1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905,
            8929, 16001, 36289, 64769, 146305, 260609, 587521, 
            1045505, 2354689, 4188161, 9427969, 16764929, 37730305, 
            67084289, 150958081, 268386305, 603906049, 1073643521, 
            2415771649, 4294770689, 9663381505, 17179475969
]

insertionSortDistanceSequence = [1]

algorithms = {
    "Default Python Sort": defaultSort,
    "Shell Sort": ShellSort,
    "Shell + Hibbard" : HibbardSort,
    "Shell + Prat, Knutt": ShellPlusKnuttPrattSort,
    "Shell + Ciura Sort": ShellPlusCiuraSort,
    "Shell + Sedgewick Sort": ShellPlusSedgewickSort,
    "Insertion Sort": insertionSort
}

for name, algorithm in algorithms.items():
    measureExecution(randomNumbers, name, algorithm)

reference = sortedNumbersAsString(randomNumbers, defaultSort)

for name, algorithm in algorithms.items():
    if sortedNumbersAsString(randomNumbers, algorithm) != reference:
        print("Sorting validation failed")
        exit(1)

print("Sorting validation success")
exit(0)

In meiner Implementierung sind für einen zufälligen Satz von Zahlen die schnellsten Lücken Sedgwick und Hibbard.

mypy

Ich möchte auch den statischen Typisierungsanalysator für Python 3 erwähnen – mypy. Hilft bei der Bewältigung der Probleme, die Sprachen mit dynamischer Eingabe innewohnen, indem es die Möglichkeit ausschließt, etwas dort festzuhalten, wo es nicht benötigt wird.

Wie erfahrene Programmierer sagen: „Statisches Tippen ist nicht erforderlich, wenn Sie ein Team von Profis haben.“ Eines Tages werden wir alle Profis, wir werden Code in völliger Einheit und Verständnis mit Maschinen schreiben, aber im Moment können Sie ähnliche Dienstprogramme verwenden und statisch typisierte Sprachen.

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/shellSort
http://mypy-lang.org/

Quellen

https://dl.acm.org/doi/10.1145/368370.368387
https://en.wikipedia.org/wiki/Shellsort
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
https://ru.wikipedia.org/wiki/Сортировка_Шелла
https://neerc.ifmo.ru/wiki/index.php?title=Сортировка_Шелла
https://twitter.com/gvanrossum/status/700741601966985216

Doppelte Auswahlsortierung

Doppelte Auswahlsortierung – eine Unterart der Auswahlsortierung, die anscheinend doppelt so schnell sein sollte. Der Vanilla-Algorithmus durchläuft die Liste der Zahlen doppelt, findet die Mindestzahl und tauscht die Plätze mit der aktuellen Zahl, auf die die Schleife auf der Ebene darüber zeigt. Die Sortierung mit doppelter Auswahl sucht nach den minimalen und maximalen Zahlen und ersetzt dann die beiden Ziffern, auf die die Schleife auf der Ebene darüber zeigt – zwei Zahlen links und rechts. Diese ganze Orgie endet, wenn die Cursor der zu ersetzenden Zahlen in der Mitte der Liste gefunden werden und als Ergebnis sortierte Zahlen links und rechts von der visuellen Mitte erhalten werden.
Die zeitliche Komplexität des Algorithmus ähnelt der von Selection Sort – O(n2), aber angeblich gibt es eine Beschleunigung von 30 %.

Grenzzustand

Bereits in diesem Stadium können Sie sich den Moment einer Kollision vorstellen, zum Beispiel, wenn die Zahl des linken Cursors (die Mindestzahl) auf die Höchstzahl in der Liste zeigt, dann wird die Mindestzahl neu angeordnet, die Neuordnung der Höchstzahl bricht sofort zusammen. Daher beinhalten alle Implementierungen des Algorithmus die Prüfung auf solche Fälle und das Ersetzen von Indizes durch korrekte. In meiner Implementierung hat eine Prüfung gereicht:

  maximalNumberIndex = minimalNumberIndex;
}

Реализация на Cito

Cito – язык либ, язык транслятор. На нем можно писать для C, C++, C#, Java, JavaScript, Python, Swift, TypeScript, OpenCL C, при этом совершенно ничего не зная про эти языки. Исходный код на языке Cito транслируется в исходный код на поддерживаемых языках, далее можно использовать как библиотеку, либо напрямую, исправив сгенеренный код руками. Эдакий Write once – translate to anything.
Double Selection Sort на cito:

{
    public static int[] sort(int[]# numbers, int length)
    {
        int[]# sortedNumbers = new int[length];
        for (int i = 0; i < length; i++) {
            sortedNumbers[i] = numbers[i];
        }
        for (int leftCursor = 0; leftCursor < length / 2; leftCursor++) {
            int minimalNumberIndex = leftCursor;
            int minimalNumber = sortedNumbers[leftCursor];

            int rightCursor = length - (leftCursor + 1);
            int maximalNumberIndex = rightCursor;
            int maximalNumber = sortedNumbers[maximalNumberIndex];

            for (int cursor = leftCursor; cursor <= rightCursor; cursor++) { int cursorNumber = sortedNumbers[cursor]; if (minimalNumber > cursorNumber) {
                    minimalNumber = cursorNumber;
                    minimalNumberIndex = cursor;
                }
                if (maximalNumber < cursorNumber) {
                    maximalNumber = cursorNumber;
                    maximalNumberIndex = cursor;
                }
            }

            if (leftCursor == maximalNumberIndex) {
                maximalNumberIndex = minimalNumberIndex;
            }

            int fromNumber = sortedNumbers[leftCursor];
            int toNumber = sortedNumbers[minimalNumberIndex];
            sortedNumbers[minimalNumberIndex] = fromNumber;
            sortedNumbers[leftCursor] = toNumber;

            fromNumber = sortedNumbers[rightCursor];
            toNumber = sortedNumbers[maximalNumberIndex];
            sortedNumbers[maximalNumberIndex] = fromNumber;
            sortedNumbers[rightCursor] = toNumber;
        }
        return sortedNumbers;
    }
} 

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/doubleSelectionSort
https://github.com/pfusik/cito

Quellen

https://www.researchgate.net/publication/330084245_Improved_Double_Selection_Sort_using_Algorithm
http://algolab.valemak.com/selection-double
https://www.geeksforgeeks.org/sorting-algorithm-slightly-improves-selection-sort/

Cocktail-Shaker-Sorte

Cocktail-Shaker-Sortierung – Schüttlersortierung, eine Variante der bidirektionalen Blasensortierung.
Der Algorithmus funktioniert wie folgt:

  1. Die anfängliche Suchrichtung in der Schleife wird ausgewählt (normalerweise von links nach rechts)
  2. Als nächstes werden in der Schleife die Zahlen paarweise überprüft
  3. Wenn das nächste Element größer ist, werden sie vertauscht
  4. Wenn der Suchvorgang abgeschlossen ist, beginnt er erneut mit umgekehrter Richtung
  5. Die Suche wird wiederholt, bis keine Permutationen mehr vorhanden sind

Die zeitliche Komplexität des Algorithmus ist ähnlich wie bei einer Blase – O(n2).

Beispiel für die Implementierung in PHP:

<?php

function cocktailShakeSort($numbers)
{
    echo implode(",", $numbers),"\n";
    $direction = false;
    $sorted = false;
    do {
        $direction = !$direction;        
        $firstIndex = $direction == true ? 0 : count($numbers) - 1;
        $lastIndex = $direction == true ? count($numbers) - 1 : 0;
        
        $sorted = true;
        for (
            $i = $firstIndex;
            $direction == true ? $i < $lastIndex : $i > $lastIndex;
            $direction == true ? $i++ : $i--
        ) {
            $lhsIndex = $direction ? $i : $i - 1;
            $rhsIndex = $direction ? $i + 1 : $i;

            $lhs = $numbers[$lhsIndex];
            $rhs = $numbers[$rhsIndex];

            if ($lhs > $rhs) {
                $numbers[$lhsIndex] = $rhs;
                $numbers[$rhsIndex] = $lhs;
                $sorted = false;
            }
        }
    } while ($sorted == false);

    echo implode(",", $numbers);
}

$numbers = [2, 1, 4, 3, 69, 35, 55, 7, 7, 2, 6, 203, 9];
cocktailShakeSort($numbers);

?>

Ссылки

https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/cocktailShakerSort/cocktailShakerSort.php

Источники

https://www.youtube.com/watch?v=njClLBoEbfI
https://www.geeksforgeeks.org/cocktail-sort/
https://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort