Heapsort – classificação em pirâmide. Complexidade de tempo do algoritmo – O (n log n), rápido, certo? Eu chamaria isso de classificação de classificação de pedras que caem. Parece-me que a maneira mais fácil de explicar é visualmente.
A entrada é uma lista de números, por exemplo:
5, 0, 7, 2, 3, 9, 4
Da esquerda para a direita, uma estrutura de dados é criada – uma árvore binária, ou como eu chamo – pirâmide. Os elementos da pirâmide podem ter no máximo dois elementos filhos, mas apenas um elemento superior.
Vamos fazer uma árvore binária:
⠀⠀5
⠀0⠀7
2 3 9 4
Se você olhar a pirâmide por muito tempo, verá que são apenas números de uma matriz, vindo um após o outro, o número de elementos em cada andar é multiplicado por dois.
A seguir, a diversão começa; vamos classificar a pirâmide de baixo para cima usando o método das pedras caindo (heapify). A classificação poderia ser iniciada a partir do último andar (2 3 9 4), mas não adianta porque não há piso abaixo onde você possa cair.
Portanto, começamos a descartar elementos do penúltimo andar (0 7)
⠀⠀5
⠀0⠀7
2 3 9 4
O primeiro elemento a cair é selecionado da direita, no nosso caso é 7, então olhamos o que está abaixo dele, e abaixo dele estão 9 e 4, nove é maior que quatro, e também nove é maior que Sete! Colocamos 7 em 9 e colocamos 9 no lugar 7.
⠀⠀5
⠀0⠀9
2 3 7 4
A seguir, entendemos que o sete não tem onde cair, passamos para o número 0, que está localizado no penúltimo andar à esquerda:
⠀⠀5
⠀0⠀9
2 3 7 4
Vamos ver o que há por baixo – 2 e 3, dois é menor que três, três é maior que zero, então trocamos zero por três:
⠀⠀5
⠀3⠀9
2 0 7 4
Quando chegar ao final do andar, vá para o andar de cima e largue tudo lá, se puder.
O resultado é uma estrutura de dados – um heap, ou seja, max heap, porque no topo está o maior elemento:
⠀⠀9
⠀3⠀7
2 0 5 4
Se você retornar para uma representação de array, você obterá uma lista:
[9, 3, 7, 2, 0, 5, 4]
A partir disso podemos concluir que ao trocar o primeiro e o último elemento, obtemos o primeiro número na posição final ordenada, ou seja, 9 deve estar no final da lista ordenada, troque de lugar:
[4, 3, 7, 2, 0, 5, 9]
Vejamos uma árvore binária:
⠀⠀4
⠀3⠀7
2 0 5 9
O resultado é uma situação em que a parte inferior da árvore está ordenada, basta colocar 4 na posição correta, repetir o algoritmo, mas não levar em consideração os números já ordenados, nomeadamente 9:
⠀⠀4
⠀3⠀7
2 0 5 9
⠀⠀7
⠀3⠀4
2 0 5 9
⠀⠀7
⠀3⠀5
2 0 4 9
Acontece que nós, tendo perdido 4, aumentamos o próximo maior número depois de 9 – 7. Troque o último número não classificado (4) e o maior número (7)
⠀⠀4
⠀3⠀5
2 0 7 9
Acontece que agora temos dois números na posição final correta:
4, 3, 5, 2, 0, 7, 9
Em seguida repetimos o algoritmo de classificação, ignorando os já classificados, no final obtemos um heap a> tipo:
⠀⠀0
⠀2⠀3
4 5 7 9
Ou como uma lista:
0, 2, 3, 4, 5, 7, 9
Implementação
O algoritmo geralmente é dividido em três funções:
- Criando uma pilha
- Algoritmo de peneiração (heapify)
- Substituindo o último elemento não classificado e o primeiro
O heap é criado percorrendo a penúltima linha da árvore binária usando a função heapify, da direita para a esquerda, até o final do array. A seguir no ciclo, é feita a primeira substituição de números, após a qual o primeiro elemento cai/permanece no lugar, como resultado o elemento maior cai em primeiro lugar, o ciclo é repetido com uma diminuição de participantes em um, porque após cada passagem, os números classificados permanecem no final da lista.
Exemplo de Heapsort em Ruby:
module Colors
BLUE = "\033[94m"
RED = "\033[31m"
STOP = "\033[0m"
end
def heapsort(rawNumbers)
numbers = rawNumbers.dup
def swap(numbers, from, to)
temp = numbers[from]
numbers[from] = numbers[to]
numbers[to] = temp
end
def heapify(numbers)
count = numbers.length()
lastParentNode = (count - 2) / 2
for start in lastParentNode.downto(0)
siftDown(numbers, start, count - 1)
start -= 1
end
if DEMO
puts "--- heapify ends ---"
end
end
def siftDown(numbers, start, rightBound)
cursor = start
printBinaryHeap(numbers, cursor, rightBound)
def calculateLhsChildIndex(cursor)
return cursor * 2 + 1
end
def calculateRhsChildIndex(cursor)
return cursor * 2 + 2
end
while calculateLhsChildIndex(cursor) <= rightBound
lhsChildIndex = calculateLhsChildIndex(cursor)
rhsChildIndex = calculateRhsChildIndex(cursor)
lhsNumber = numbers[lhsChildIndex]
biggerChildIndex = lhsChildIndex
if rhsChildIndex <= rightBound
rhsNumber = numbers[rhsChildIndex]
if lhsNumber < rhsNumber
biggerChildIndex = rhsChildIndex
end
end
if numbers[cursor] < numbers[biggerChildIndex]
swap(numbers, cursor, biggerChildIndex)
cursor = biggerChildIndex
else
break
end
printBinaryHeap(numbers, cursor, rightBound)
end
printBinaryHeap(numbers, cursor, rightBound)
end
def printBinaryHeap(numbers, nodeIndex = -1, rightBound = -1)
if DEMO == false
return
end
perLineWidth = (numbers.length() * 4).to_i
linesCount = Math.log2(numbers.length()).ceil()
xPrinterCount = 1
cursor = 0
spacing = 3
for y in (0..linesCount)
line = perLineWidth.times.map { " " }
spacing = spacing == 3 ? 4 : 3
printIndex = (perLineWidth / 2) - (spacing * xPrinterCount) / 2
for x in (0..xPrinterCount - 1)
if cursor >= numbers.length
break
end
if nodeIndex != -1 && cursor == nodeIndex
line[printIndex] = "%s%s%s" % [Colors::RED, numbers[cursor].to_s, Colors::STOP]
elsif rightBound != -1 && cursor > rightBound
line[printIndex] = "%s%s%s" % [Colors::BLUE, numbers[cursor].to_s, Colors::STOP]
else
line[printIndex] = numbers[cursor].to_s
end
cursor += 1
printIndex += spacing
end
print line.join()
xPrinterCount *= 2
print "\n"
end
end
heapify(numbers)
rightBound = numbers.length() - 1
while rightBound > 0
swap(numbers, 0, rightBound)
rightBound -= 1
siftDown(numbers, 0, rightBound)
end
return numbers
end
numbersCount = 14
maximalNumber = 10
numbers = numbersCount.times.map { Random.rand(maximalNumber) }
print numbers
print "\n---\n"
start = Time.now
sortedNumbers = heapsort(numbers)
finish = Time.now
heapSortTime = start - finish
start = Time.now
referenceSortedNumbers = numbers.sort()
finish = Time.now
referenceSortTime = start - finish
print "Reference sort: "
print referenceSortedNumbers
print "\n"
print "Reference sort time: %f\n" % referenceSortTime
print "Heap sort: "
print sortedNumbers
print "\n"
if DEMO == false
print "Heap sort time: %f\n" % heapSortTime
else
print "Disable DEMO for performance measure\n"
end
if sortedNumbers != referenceSortedNumbers
puts "Validation failed"
exit 1
else
puts "Validation success"
exit 0
end
Esse algoritmo não é fácil de entender sem visualização, então a primeira coisa que recomendo é escrever uma função que imprima a visualização atual da árvore binária.
Links
https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/heapsort/heapsort.rb
Fontes
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://www.youtube.com/watch?v=LbB357_RwlY
https://habr.com/ru/company/ otus/blog/460087/
https://ru.wikipedia.org/wiki/Pyramid_sort
https://neerc.ifmo.ru/wiki /index.php?title=Heap_sort
https://wiki5.ru/wiki/Heapsort
https://wiki.c2.com/?HeapSort p>
https://ru.wikipedia.org/wiki/Tree (estrutura de dados)
https://ru.wikipedia.org/wiki/Heap (estrutura de dados)
https://www.youtube.com/watch?v=2DmK_H7IdTo
https://www.youtube.com/watch?v=kU4KBD4NFtw
https://www.youtube.com/watch?v=DU1uG5310x0
https://www.youtube.com/watch?v =BzQGPA_v-vc
https://www.geeksforgeeks.org/ representação de array de heap binário/
https://habr.com/ru/post/112222/ a>
https://www.cs.usfca. edu/~galles/visualization/BST.html
https://www.youtube.com/watch?v=EQzqHWtsKq4
https://ru.wikibrief.org/wiki/Heapsort
https://www.youtube.com/watch?v=GUUpmrTnNbw