Tree sort

Tree sort – sorting by binary search tree. Time complexity – O(n²). In such a tree, each node has numbers on the left less than the node, on the right greater than the node, when coming from the root and printing values ​​from left to right, we get a sorted list of numbers. Amazing, right?

Let’s consider the binary search tree diagram:

Derrick Coetzee (public domain)

Try manually reading the numbers starting from the second to last left node in the lower left corner, for each node on the left – a node on the right.

It will look like this:

  1. The second to last node on the bottom left is 3.
  2. It has a left branch – 1.
  3. We take this number (1)
  4. Next we take the vertex itself 3 (1, 3)
  5. On the right is branch 6, but it contains branches. Therefore, we read it in the same way.
  6. Left branch of node 6 is number 4 (1, 3, 4)
  7. The node itself is 6 (1, 3, 4, 6)
  8. Right 7 (1, 3, 4, 6, 7)
  9. We go up to the root node – 8 (1,3, 4,6, 7, 8)
  10. Print everything on the right by analogy
  11. We get the final list – 1, 3, 4, 6, 7, 8, 10, 13, 14

To implement the algorithm in code, two functions are required:

  1. Building a Binary Search Tree
  2. Print out the binary search tree in the correct order

A binary search tree is assembled in the same way as it is read, each node is assigned a number on the left or right, depending on whether it is smaller or larger.

Example in Lua:


function Node:new(value, lhs, rhs)
    output = {}
    setmetatable(output, self)
    self.__index = self  
    output.value = value
    output.lhs = lhs
    output.rhs = rhs
    output.counter = 1
    return output  
end

function Node:Increment()
    self.counter = self.counter + 1
end

function Node:Insert(value)
    if self.lhs ~= nil and self.lhs.value > value then
        self.lhs:Insert(value)
        return
    end

    if self.rhs ~= nil and self.rhs.value < value then
        self.rhs:Insert(value)
        return
    end

    if self.value == value then
        self:Increment()
        return
    elseif self.value > value then
        if self.lhs == nil then
            self.lhs = Node:new(value, nil, nil)
        else
            self.lhs:Insert(value)
        end
        return
    else
        if self.rhs == nil then
            self.rhs = Node:new(value, nil, nil)
        else
            self.rhs:Insert(value)
        end
        return
    end
end

function Node:InOrder(output)
    if self.lhs ~= nil then
       output = self.lhs:InOrder(output)
    end
    output = self:printSelf(output)
    if self.rhs ~= nil then
        output = self.rhs:InOrder(output)
    end
    return output
end

function Node:printSelf(output)
    for i=0,self.counter-1 do
        output = output .. tostring(self.value) .. " "
    end
    return output
end

function PrintArray(numbers)
    output = ""
    for i=0,#numbers do
        output = output .. tostring(numbers[i]) .. " "
    end    
    print(output)
end

function Treesort(numbers)
    rootNode = Node:new(numbers[0], nil, nil)
    for i=1,#numbers do
        rootNode:Insert(numbers[i])
    end
    print(rootNode:InOrder(""))
end


numbersCount = 10
maxNumber = 9

numbers = {}

for i=0,numbersCount-1 do
    numbers[i] = math.random(0, maxNumber)
end

PrintArray(numbers)
Treesort(numbers)

Важный нюанс что для чисел которые равны вершине придумано множество интересных механизмов подцепления к ноде, я же просто добавил счетчик к классу вершины, при распечатке числа возвращаются по счетчику.

Ссылки

https://gitlab.com/demensdeum/algorithms/-/tree/master/sortAlgorithms/treesort

Источники

TreeSort Algorithm Explained and Implemented with Examples in Java | Sorting Algorithms | Geekific – YouTube

Tree sort – YouTube

Convert Sorted Array to Binary Search Tree (LeetCode 108. Algorithm Explained) – YouTube

Sorting algorithms/Tree sort on a linked list – Rosetta Code

Tree Sort – GeeksforGeeks

Tree sort – Wikipedia

How to handle duplicates in Binary Search Tree? – GeeksforGeeks

Tree Sort | GeeksforGeeks – YouTube

Bucket Sort

Bucket Sort – sorting by buckets. The algorithm is similar to counting sort, with the difference that the numbers are collected in “buckets”-ranges, then the buckets are sorted using any other, sufficiently productive, sorting algorithm, and the final chord is the unfolding of the “buckets” one by one, resulting in a sorted list.

The algorithm’s time complexity is O(nk). The algorithm works in linear time for data that obeys a uniform distribution law. To put it simply, the elements must be in a certain range, without “spikes”, for example, numbers from 0.0 to 1.0. If among such numbers there are 4 or 999, then such a series is no longer considered “even” according to the yard laws.

Example of implementation in Julia:

    buckets = Vector{Vector{Int}}()
    
    for i in 0:bucketsCount - 1
        bucket = Vector{Int}()
        push!(buckets, bucket)
    end

    maxNumber = maximum(numbers)

    for i in 0:length(numbers) - 1
        bucketIndex = 1 + Int(floor(bucketsCount * numbers[1 + i] / (maxNumber + 1)))
        push!(buckets[bucketIndex], numbers[1 + i])
    end

    for i in 0:length(buckets) - 1
        bucketIndex = 1 + i
        buckets[bucketIndex] = sort(buckets[bucketIndex])
    end

    flat = [(buckets...)...]
    print(flat, "\n")

end

numbersCount = 10
maxNumber = 10
numbers = rand(1:maxNumber, numbersCount)
print(numbers,"\n")
bucketsCount = 10
bucketSort(numbers, bucketsCount)

На производительность алгоритма также влияет число ведер, для большего количества чисел лучше взять большее число ведер (Algorithms in a nutshell by George T. Heineman)

Ссылки

https://gitlab.com/demensdeum/algorithms/-/tree/master/sortAlgorithms/bucketSort

Источники

https://www.youtube.com/watch?v=VuXbEb5ywrU
https://www.youtube.com/watch?v=ELrhrrCjDOA
https://medium.com/karuna-sehgal/an-introduction-to-bucket-sort-62aa5325d124
https://www.geeksforgeeks.org/bucket-sort-2/
https://ru.wikipedia.org/wiki/%D0%91%D0%BB%D0%BE%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0
https://www.youtube.com/watch?v=LPrF9yEKTks
https://en.wikipedia.org/wiki/Bucket_sort
https://julialang.org/
https://www.oreilly.com/library/view/algorithms-in-a/9780596516246/ch04s08.html

Radixsort

Radix Sort is a radix sort. The algorithm is similar to counting sort in that there is no comparison of elements, instead, elements are grouped *symbolically* into *buckets*, the bucket is selected by the index of the current number-symbol. Time complexity is O(nd).

It works something like this:

  • As input we receive the numbers 6, 12, 44, 9
  • Let’s create 10 list buckets (0-9) into which we will add/sort numbers bitwise.

Next:

  1. Start a loop with counter i until the maximum number of characters in the number
  2. According to the index i from right to left we get one symbol for each number, if there is no symbol, we consider it zero
  3. Convert the symbol to a number
  4. We select a bucket by index – number, put the number there in full
  5. After we finish iterating over the numbers, we transform all the buckets back into a list of numbers
  6. We get numbers sorted by rank
  7. Repeat until all the digits are gone

Radix Sort example in Scala:


import scala.util.Random.nextInt



object RadixSort {

    def main(args: Array[String]) = {

        var maxNumber = 200

        var numbersCount = 30

        var maxLength = maxNumber.toString.length() - 1



        var referenceNumbers = LazyList.continually(nextInt(maxNumber + 1)).take(numbersCount).toList

        var numbers = referenceNumbers

        

        var buckets = List.fill(10)(ListBuffer[Int]())



        for( i <- 0 to maxLength) { numbers.foreach( number => {

                    var numberString = number.toString

                    if (numberString.length() > i) {

                        var index = numberString.length() - i - 1

                        var character = numberString.charAt(index).toString

                        var characterInteger = character.toInt  

                        buckets.apply(characterInteger) += number

                    }

                    else {

                        buckets.apply(0) += number

                    }

                }

            )

            numbers = buckets.flatten

            buckets.foreach(x => x.clear())

        }

        println(referenceNumbers)

        println(numbers)

        println(s"Validation result: ${numbers == referenceNumbers.sorted}")

    }

}

The algorithm also has a version for parallel execution, for example on a GPU; there is also a bit sorting variant, which is probably very interesting and truly breathtaking!

Links

https://gitlab .com/demensdeum/algorithms/-/blob/master/sortAlgorithms/radixSort/radixSort.scala

Sources

https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%80%D0%B0%D0%B7%D1%80%D1%8F%D 0%B4%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0% BA%D0%B0
https://www.geeksforgeeks.org/radix-sort/

https://www.youtube.com/watch?v=toAlAJKojos

https://github.com/gyatskov/radix-sort

Heapsort

Heapsort is a pyramid sort. The time complexity of the algorithm is O(n log n), fast, right? I would call this sorting – sorting of falling stones. It seems to me that the easiest way to explain it is visually.

The input is a list of numbers, for example:
5, 0, 7, 2, 3, 9, 4

From left to right, a data structure is made – a binary tree, or as I call it – a pyramid. Pyramid elements can have a maximum of two child elements, but only one top element.

Let’s make a binary tree:
⠀⠀5
⠀0⠀7
2 3 9 4

If you look at the pyramid for a long time, you can see that it is simply numbers from an array, following one after another, the number of elements on each floor is multiplied by two.

Next comes the most interesting part, we sort the pyramid from the bottom up, using the falling pebbles method (heapify). Sorting could start from the last floor (2 3 9 4), but there is no point because there is no floor below to fall to.

Therefore, we begin to drop elements from the penultimate floor (0 7)
⠀⠀5
⠀0⠀7
2 3 9 4

The first element to fall is chosen from the right, in our case it is 7, then we look at what is under it, and under it is 9 and 4, nine is greater than four, and nine is also greater than seven! We drop 7 on 9, and lift 9 to the place of 7.
⠀⠀5
⠀0⠀9
2 3 7 4

Next, we understand that the seven has nowhere to fall lower, we move on to the number 0, which is on the penultimate floor on the left:
⠀⠀5
0⠀9
2 3 7 4

We look at what’s underneath it – 2 and 3, two is less than three, three is greater than zero, so we swap zero and three:
⠀⠀5
⠀3⠀9
2 0 7 4

When you reach the end of the floor, go to the floor above and drop everything there if you can.
The result will be a data structure – a heap, namely a max heap, since the largest element is at the top:
⠀⠀9
⠀3⠀7
2 0 5 4

If you return to the array representation, you will get a list:
[9, 3, 7, 2, 0, 5, 4]

From this we can conclude that by swapping the first and last elements, we will get the first number in the final sorted position, namely 9 should be at the end of the sorted list, swap them:
[4, 3, 7, 2, 0, 5, 9]

Let’s look at a binary tree:
⠀⠀4
⠀3⠀7
2 0 5 9

We have a situation where the bottom of the tree is sorted, we just need to drop 4 to the correct position, we repeat the algorithm, but we do not take into account the already sorted numbers, namely 9:
⠀⠀4
⠀3⠀7
2 0 5 9

⠀⠀7
⠀3⠀4
2 0 5 9

⠀⠀7
⠀3⠀5
2 0 4 9

It turned out that, having dropped 4, we raised the next largest number after 9 – 7. We swap the last unsorted number (4) and the largest number (7)
⠀⠀4
⠀3⠀5
2 0 7 9

It turns out that now we have two numbers in the correct final position:
4, 3, 5, 2, 0, 7, 9

Then we repeat the sorting algorithm, ignoring those already sorted, and as a result we get a heap of the following type:
⠀⠀0
⠀2⠀3
4 5 7 9

Or as a list:
0, 2, 3, 4, 5, 7, 9

Implementation

The algorithm is usually divided into three functions:

  1. Creating a heap
  2. Heapify Algorithm
  3. Replace the last unsorted element with the first

The heap is created by going through the penultimate row of the binary tree using the heapify function, from right to left until the end of the array. Then the first number swap is made in the loop, after which the first element falls/stays in place, as a result of which the largest element gets to the first place, the loop is repeated with the participants decreasing by one, since after each pass at the end of the list there are sorted numbers.

Heapsort example in Ruby:






module Colors



    BLUE = "\033[94m"



    RED = "\033[31m"



    STOP = "\033[0m"



end







def heapsort(rawNumbers)



    numbers = rawNumbers.dup







    def swap(numbers, from, to)



        temp = numbers[from]



        numbers[from] = numbers[to]



        numbers[to] = temp



    end







    def heapify(numbers)



        count = numbers.length()



        lastParentNode = (count - 2) / 2







        for start in lastParentNode.downto(0)



            siftDown(numbers, start, count - 1)



            start -= 1 



        end







        if DEMO



            puts "--- heapify ends ---"



        end



    end







    def siftDown(numbers, start, rightBound)      



        cursor = start



        printBinaryHeap(numbers, cursor, rightBound)







        def calculateLhsChildIndex(cursor)



            return cursor * 2 + 1



        end







        def calculateRhsChildIndex(cursor)



            return cursor * 2 + 2



        end            







        while calculateLhsChildIndex(cursor) <= rightBound



            lhsChildIndex = calculateLhsChildIndex(cursor)



            rhsChildIndex = calculateRhsChildIndex(cursor)







            lhsNumber = numbers[lhsChildIndex]



            biggerChildIndex = lhsChildIndex







            if rhsChildIndex <= rightBound



                rhsNumber = numbers[rhsChildIndex]



                if lhsNumber < rhsNumber



                    biggerChildIndex = rhsChildIndex



                end



            end







            if numbers[cursor] < numbers[biggerChildIndex]



                swap(numbers, cursor, biggerChildIndex)



                cursor = biggerChildIndex



            else



                break



            end



            printBinaryHeap(numbers, cursor, rightBound)



        end



        printBinaryHeap(numbers, cursor, rightBound)



    end







    def printBinaryHeap(numbers, nodeIndex = -1, rightBound = -1)



        if DEMO == false



            return



        end



        perLineWidth = (numbers.length() * 4).to_i



        linesCount = Math.log2(numbers.length()).ceil()



        xPrinterCount = 1



        cursor = 0



        spacing = 3



        for y in (0..linesCount)



            line = perLineWidth.times.map { " " }



            spacing = spacing == 3 ? 4 : 3



            printIndex = (perLineWidth / 2) - (spacing * xPrinterCount) / 2



            for x in (0..xPrinterCount - 1)



                if cursor >= numbers.length



                    break



                end



                if nodeIndex != -1 && cursor == nodeIndex



                    line[printIndex] = "%s%s%s" % [Colors::RED, numbers[cursor].to_s, Colors::STOP]



                elsif rightBound != -1 && cursor > rightBound



                    line[printIndex] = "%s%s%s" % [Colors::BLUE, numbers[cursor].to_s, Colors::STOP]



                else



                    line[printIndex] = numbers[cursor].to_s



                end



                cursor += 1



                printIndex += spacing



            end



            print line.join()



            xPrinterCount *= 2           



            print "\n"            



        end



    end







    heapify(numbers)



    rightBound = numbers.length() - 1







    while rightBound > 0



        swap(numbers, 0, rightBound)   



        rightBound -= 1



        siftDown(numbers, 0, rightBound)     



    end







    return numbers



end







numbersCount = 14



maximalNumber = 10



numbers = numbersCount.times.map { Random.rand(maximalNumber) }



print numbers



print "\n---\n"







start = Time.now



sortedNumbers = heapsort(numbers)



finish = Time.now



heapSortTime = start - finish







start = Time.now



referenceSortedNumbers = numbers.sort()



finish = Time.now



referenceSortTime = start - finish







print "Reference sort: "



print referenceSortedNumbers



print "\n"



print "Reference sort time: %f\n" % referenceSortTime



print "Heap sort:      "



print sortedNumbers



print "\n"



if DEMO == false



    print "Heap sort time:      %f\n" % heapSortTime



else



    print "Disable DEMO for performance measure\n"



end







if sortedNumbers != referenceSortedNumbers



    puts "Validation failed"



    exit 1



else



    puts "Validation success"



    exit 0



end



Without visualization, this algorithm is not easy to understand, so the first thing I recommend is to write a function that will print the current form of the binary tree.

Links

https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/heapsort/heapsort.rb

Sources

http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://www.youtube.com/watch?v=LbB357_RwlY

https://habr.com/ru/company/ otus/blog/460087/

https://ru.wikipedia.org/wiki/Пыramidal_sorting

https://neerc.ifmo.ru/wiki /index.php?title=Heap_sort

https://wiki5.ru/wiki/Heapsort

https://wiki.c2.com/?HeapSort

https://ru.wikipedia.org/wiki/Tree (data structure)

https://ru.wikipedia.org/wiki/Heap (data structure)

https://www.youtube.com/watch?v=2DmK_H7IdTo

https://www.youtube.com/watch?v=kU4KBD4NFtw

https://www.youtube.com/watch?v=DU1uG5310x0

https://www.youtube.com/watch?v =BzQGPA_v-vc

https://www.geeksforgeeks.org/ array-representation-of-binary-heap/

https://habr.com/ru/post/112222/

https://www.cs.usfca. edu/~galles/visualization/BST.html

https://www.youtube.com/watch?v=EQzqHWtsKq4

https://medium.com/@dimko1/%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC% D1 %8B-%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B8-heapsort-796ba965018b

https://ru.wikibrief.org/wiki/Heapsort

https://www.youtube.com/watch?v=GUUpmrTnNbw

Quicksort

Quicksort is a divide-and-conquer sorting algorithm. Recursively, we sort the array of numbers in parts, placing the numbers in smaller and larger order from the selected pivot element, and insert the pivot element itself into the gap between them. After several recursive iterations, we get a sorted list. Time complexity is O(n2).

Scheme:

  1. We start by getting the list of elements from the outside, the sorting boundaries. In the first step, the sorting boundaries will be from the beginning to the end.
  2. We check that the boundaries of the beginning and end do not intersect, if this happens, then it’s time to finish
  3. We select some element from the list, call it the reference
  4. Move it to the right at the end to the last index so it doesn’t get in the way
  5. Create a counter of *smaller numbers* that is still equal to zero
  6. We go through the list in a loop from left to right, up to the last index where the reference element is located, not inclusive
  7. Each element is compared with the reference
  8. If it is less than the reference, then we swap them by the index of the counter of smaller numbers. We increment the counter of smaller numbers.
  9. When the cycle reaches the reference element, we stop and swap the reference element with the element with the counter of smaller numbers.
  10. We run the algorithm separately for the left smaller part of the list, and separately for the right larger part of the list.
  11. Eventually all recursive iterations will start to stop due to the check in point 2
  12. Get a sorted list

Quicksort was invented by scientist Charles Anthony Richard Hoare at Moscow State University, who, having learned Russian, studied computer translation and probability theory at the Kolmogorov School. In 1960, due to the political crisis, he left the Soviet Union.

Example implementation in Rust:


use rand::Rng;

fn swap(numbers: &mut [i64], from: usize, to: usize) {
    let temp = numbers[from];
    numbers[from] = numbers[to];
    numbers[to] = temp;
}

fn quicksort(numbers: &mut [i64], left: usize, right: usize) {
    if left >= right {
        return
    }
    let length = right - left;
    if length <= 1 {
        return
    }
    let pivot_index = left + (length / 2);
    let pivot = numbers[pivot_index];

    let last_index = right - 1;
    swap(numbers, pivot_index, last_index);

    let mut less_insert_index = left;

    for i in left..last_index {
        if numbers[i] < pivot {
            swap(numbers, i, less_insert_index);
            less_insert_index += 1;
        }
    }
    swap(numbers, last_index, less_insert_index);
    quicksort(numbers, left, less_insert_index);
    quicksort(numbers, less_insert_index + 1, right);
}

fn main() {
    let mut numbers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    let mut reference_numbers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

    let mut rng = rand::thread_rng();
    for i in 0..numbers.len() {
        numbers[i] = rng.gen_range(-10..10);
        reference_numbers[i] = numbers[i];
    }

    reference_numbers.sort();

  println!("Numbers           {:?}", numbers);
  let length = numbers.len();
  quicksort(&mut numbers, 0, length);
  println!("Numbers           {:?}", numbers);
  println!("Reference numbers {:?}", reference_numbers);

  if numbers != reference_numbers {
    println!("Validation failed");
    std::process::exit(1);
  }
  else {
    println!("Validation success!");
    std::process::exit(0);
  }
}

If nothing is clear, I suggest watching a video by Rob Edwards from the University of San Diego https://www.youtube.com/watch?v=ZHVk2blR45Q it shows the essence and implementation of the algorithm in the simplest way, step by step.

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/quickSort

Sources

https://www.youtube.com/watch?v =4s-aG6yGGLU
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=Hoixgm4-P4M
https://ru.wikipedia.org/wiki/Быстрая_сортировка
https://www.youtube.com/watch?v=Hoixgm4-P4M
https://www.youtube.com/watch?v=XE4VP_8Y0BU
https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.youtube.com/watch?v=ZHVk2blR45Q
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
https://www.youtube.com/watch?v=4s-aG6yGGLU
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=maibrCbZWKw
https://www.geeksforgeeks.org/quick-sort/
https://www.youtube.com/watch?v=uXBnyYuwPe8

Binary Insertion Sort

Binary Insertion Sort is a variant of insertion sort in which the insertion position is determined using binary search. The time complexity of the algorithm is O(n2)

The algorithm works like this:

  1. Starts a loop from zero to the end of the list
  2. In the loop, a number is selected for sorting, the number is saved in a separate variable
  3. Binary search finds the index to insert this number compared to the numbers to the left
  4. Once the index is found, the numbers on the left are shifted one position to the right, starting with the insertion index. The process will erase the number you want to sort.
  5. The previously saved number is inserted at the insertion index
  6. At the end of the loop, the entire list will be sorted

During binary search, a situation is possible when the number will not be found, but the index is not returned. Due to the peculiarity of binary search, the number closest to the desired one will be found, then to return the index it will be necessary to compare it with the desired one, if the desired one is less, then the desired one should be on the left by index, and if it is greater or equal, then on the right.

Go code:


import (
	"fmt"
	"math/rand"
	"time"
)

const numbersCount = 20
const maximalNumber = 100

func binarySearch(numbers []int, item int, low int, high int) int {
	for high > low {
		center := (low + high) / 2
		if numbers[center] < item { low = center + 1 } else if numbers[center] > item {
			high = center - 1
		} else {
			return center
		}
	}

	if numbers[low] < item {
		return low + 1
	} else {
		return low
	}
}

func main() {
	rand.Seed(time.Now().Unix())
	var numbers [numbersCount]int
	for i := 0; i < numbersCount; i++ {
		numbers[i] = rand.Intn(maximalNumber)
	}
	fmt.Println(numbers)

	for i := 1; i < len(numbers); i++ { searchAreaLastIndex := i - 1 insertNumber := numbers[i] insertIndex := binarySearch(numbers[:], insertNumber, 0, searchAreaLastIndex) for x := searchAreaLastIndex; x >= insertIndex; x-- {
			numbers[x+1] = numbers[x]
		}
		numbers[insertIndex] = insertNumber
	}
	fmt.Println(numbers)
}

Links

https://gitlab.com/demensdeum/algorithms/-/blob/master/sortAlgorithms/binaryInsertionSort/binaryInsertionSort.go

Sources

https://www.geeksforgeeks.org/binary-insertion- sort/
https://www.youtube.com/watch?v=-OVB5pOZJug

Shell Sort

Shell Sort is a variant of insertion sorting with preliminary combing of the array of numbers.

We need to remember how insertion sort works:

1. The loop starts from zero to the end of the loop, thus the array is divided into two parts
2. For the left part, the second cycle is started, comparing elements from right to left, the smaller element on the right is omitted until a smaller element on the left is found
3. At the end of both cycles, we get a sorted list

Once upon a time, computer scientist Donald Shell was puzzled by how to improve the insertion sort algorithm. He came up with the idea of ​​also going through the array with two cycles, but at a certain distance, gradually reducing the “comb” until it turns into a regular insertion sort algorithm. Everything is really that simple, no pitfalls, we add another cycle to the two cycles on top, in which we gradually reduce the size of the “comb”. The only thing you will need to do is check the distance when comparing, so that it does not go beyond the array.

A really interesting topic is the choice of the sequence of changing the comparison length at each iteration of the first cycle. It is interesting because the performance of the algorithm depends on it.

A table of known variants and time complexity can be found here: https://en.wikipedia.org/wiki/Shellsort#Gap_sequences

Different people were involved in calculating the ideal distance, apparently they were so interested in the topic. Couldn’t they just run Ruby and call the fastest sort() algorithm?

In general, these strange people wrote dissertations on the topic of calculating the distance/gap of the “comb” for the Shell algorithm. I simply used the results of their work and checked 5 types of sequences, Hibbard, Knuth-Pratt, Chiura, Sedgewick.

import time
import random
from functools import reduce
import math

DEMO_MODE = False

if input("Demo Mode Y/N? ").upper() == "Y":
    DEMO_MODE = True

class Colors:
    BLUE = '\033[94m'
    RED = '\033[31m'
    END = '\033[0m'

def swap(list, lhs, rhs):
    list[lhs], list[rhs] = list[rhs], list[lhs]
    return list

def colorPrintoutStep(numbers: List[int], lhs: int, rhs: int):
    for index, number in enumerate(numbers):
        if index == lhs:
            print(f"{Colors.BLUE}", end = "")
        elif index == rhs:
            print(f"{Colors.RED}", end = "")
        print(f"{number},", end = "")
        if index == lhs or index == rhs:
            print(f"{Colors.END}", end = "")
        if index == lhs or index == rhs:
            print(f"{Colors.END}", end = "")
    print("\n")
    input(">")

def ShellSortLoop(numbers: List[int], distanceSequence: List[int]):
    distanceSequenceIterator = reversed(distanceSequence)
    while distance:= next(distanceSequenceIterator, None):
        for sortArea in range(0, len(numbers)):
            for rhs in reversed(range(distance, sortArea + 1)):
                lhs = rhs - distance
                if DEMO_MODE:
                    print(f"Distance: {distance}")
                    colorPrintoutStep(numbers, lhs, rhs)
                if numbers[lhs] > numbers[rhs]:
                    swap(numbers, lhs, rhs)
                else:
                    break

def ShellSort(numbers: List[int]):
    global ShellSequence
    ShellSortLoop(numbers, ShellSequence)

def HibbardSort(numbers: List[int]):
    global HibbardSequence
    ShellSortLoop(numbers, HibbardSequence)

def ShellPlusKnuttPrattSort(numbers: List[int]):
    global KnuttPrattSequence
    ShellSortLoop(numbers, KnuttPrattSequence)

def ShellPlusCiuraSort(numbers: List[int]):
    global CiuraSequence
    ShellSortLoop(numbers, CiuraSequence)

def ShellPlusSedgewickSort(numbers: List[int]):
    global SedgewickSequence
    ShellSortLoop(numbers, SedgewickSequence)

def insertionSort(numbers: List[int]):
    global insertionSortDistanceSequence
    ShellSortLoop(numbers, insertionSortDistanceSequence)

def defaultSort(numbers: List[int]):
    numbers.sort()

def measureExecution(inputNumbers: List[int], algorithmName: str, algorithm):
    if DEMO_MODE:
        print(f"{algorithmName} started")
    numbers = inputNumbers.copy()
    startTime = time.perf_counter()
    algorithm(numbers)
    endTime = time.perf_counter()
    print(f"{algorithmName} performance: {endTime - startTime}")

def sortedNumbersAsString(inputNumbers: List[int], algorithm) -> str:
    numbers = inputNumbers.copy()
    algorithm(numbers)
    return str(numbers)

if DEMO_MODE:
    maximalNumber = 10
    numbersCount = 10
else:
    maximalNumber = 10
    numbersCount = random.randint(10000, 20000)

randomNumbers = [random.randrange(1, maximalNumber) for i in range(numbersCount)]

ShellSequenceGenerator = lambda n: reduce(lambda x, _: x + [int(x[-1]/2)], range(int(math.log(numbersCount, 2))), [int(numbersCount / 2)])
ShellSequence = ShellSequenceGenerator(randomNumbers)
ShellSequence.reverse()
ShellSequence.pop()

HibbardSequence = [
    0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095,
    8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575,
    2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727,
    268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
]

KnuttPrattSequence = [
    1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 
    797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 
    1743392200, 5230176601, 15690529804, 47071589413
]

CiuraSequence = [
            1, 4, 10, 23, 57, 132, 301, 701, 1750, 4376, 
            10941, 27353, 68383, 170958, 427396, 1068491, 
            2671228, 6678071, 16695178, 41737946, 104344866, 
            260862166, 652155416, 1630388541
]

SedgewickSequence = [
            1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905,
            8929, 16001, 36289, 64769, 146305, 260609, 587521, 
            1045505, 2354689, 4188161, 9427969, 16764929, 37730305, 
            67084289, 150958081, 268386305, 603906049, 1073643521, 
            2415771649, 4294770689, 9663381505, 17179475969
]

insertionSortDistanceSequence = [1]

algorithms = {
    "Default Python Sort": defaultSort,
    "Shell Sort": ShellSort,
    "Shell + Hibbard" : HibbardSort,
    "Shell + Prat, Knutt": ShellPlusKnuttPrattSort,
    "Shell + Ciura Sort": ShellPlusCiuraSort,
    "Shell + Sedgewick Sort": ShellPlusSedgewickSort,
    "Insertion Sort": insertionSort
}

for name, algorithm in algorithms.items():
    measureExecution(randomNumbers, name, algorithm)

reference = sortedNumbersAsString(randomNumbers, defaultSort)

for name, algorithm in algorithms.items():
    if sortedNumbersAsString(randomNumbers, algorithm) != reference:
        print("Sorting validation failed")
        exit(1)

print("Sorting validation success")
exit(0)

In my implementation, for a random set of numbers, the fastest gaps are Sedgewick and Hibbard.

mypy

I would also like to mention the static typing analyzer for Python 3 – mypy. It helps to cope with the problems inherent in languages ​​with dynamic typing, namely, it eliminates the possibility of slipping something where it shouldn’t.

As experienced programmers say, “static typing is not needed when you have a team of professionals”, someday we will all become professionals, we will write code in complete unity and understanding with machines, but for now you can use such utilities and languages ​​with static typing.

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/shellSort
http://mypy-lang.org/

Sources

https://dl.acm.org/doi/10.1145/368370.368387
https://en.wikipedia.org/wiki/Shellsort
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
https://ru.wikipedia.org/wiki/Сортировка_Шелла
https://neerc.ifmo.ru/wiki/index.php?title=Сортировка_Шелла
https://twitter.com/gvanrossum/status/700741601966985216

Double Selection Sort

Double Selection Sort is a type of selection sort that should be twice as fast. The vanilla algorithm goes through a double loop over a list of numbers, finds the minimum number and swaps it with the current digit pointed to by the loop at the level above. Double selection sort looks for the minimum and maximum number, then replaces the two digits pointed to by the loop at the level above – two numbers on the left and right. This whole orgy ends when the cursors of the numbers to be replaced meet in the middle of the list, as a result, sorted numbers are obtained to the left and right of the visual center.
The time complexity of the algorithm is similar to Selection Sort – O(n2), but there is supposedly a 30% speedup.

Borderline state

Already at this stage, you can imagine the moment of collision, for example, when the number of the left cursor (minimum number) will point to the maximum number in the list, then the minimum number is rearranged, the maximum number rearrangement immediately breaks. Therefore, all implementations of the algorithm contain a check for such cases, replacing the indices with correct ones. In my implementation, one check was enough:

  maximalNumberIndex = minimalNumberIndex;
}

Реализация на Cito

Cito – язык либ, язык транслятор. На нем можно писать для C, C++, C#, Java, JavaScript, Python, Swift, TypeScript, OpenCL C, при этом совершенно ничего не зная про эти языки. Исходный код на языке Cito транслируется в исходный код на поддерживаемых языках, далее можно использовать как библиотеку, либо напрямую, исправив сгенеренный код руками. Эдакий Write once – translate to anything.
Double Selection Sort на cito:

{
    public static int[] sort(int[]# numbers, int length)
    {
        int[]# sortedNumbers = new int[length];
        for (int i = 0; i < length; i++) {
            sortedNumbers[i] = numbers[i];
        }
        for (int leftCursor = 0; leftCursor < length / 2; leftCursor++) {
            int minimalNumberIndex = leftCursor;
            int minimalNumber = sortedNumbers[leftCursor];

            int rightCursor = length - (leftCursor + 1);
            int maximalNumberIndex = rightCursor;
            int maximalNumber = sortedNumbers[maximalNumberIndex];

            for (int cursor = leftCursor; cursor <= rightCursor; cursor++) { int cursorNumber = sortedNumbers[cursor]; if (minimalNumber > cursorNumber) {
                    minimalNumber = cursorNumber;
                    minimalNumberIndex = cursor;
                }
                if (maximalNumber < cursorNumber) {
                    maximalNumber = cursorNumber;
                    maximalNumberIndex = cursor;
                }
            }

            if (leftCursor == maximalNumberIndex) {
                maximalNumberIndex = minimalNumberIndex;
            }

            int fromNumber = sortedNumbers[leftCursor];
            int toNumber = sortedNumbers[minimalNumberIndex];
            sortedNumbers[minimalNumberIndex] = fromNumber;
            sortedNumbers[leftCursor] = toNumber;

            fromNumber = sortedNumbers[rightCursor];
            toNumber = sortedNumbers[maximalNumberIndex];
            sortedNumbers[maximalNumberIndex] = fromNumber;
            sortedNumbers[rightCursor] = toNumber;
        }
        return sortedNumbers;
    }
} 

Links

https://gitlab.com/demensdeum /algorithms/-/tree/master/sortAlgorithms/doubleSelectionSort
https://github.com/pfusik/cito

Sources

https://www.researchgate.net/publication/330084245_Improved_Double_Selection_Sort_using_Algorithm
http://algolab.valemak.com/selection-double
https://www.geeksforgeeks.org/sorting-algorithm-slightly-improves-selection-sort/