Флеш жив – Interceptor 2021

Недавно оказалось что Adobe Flash достаточно стабильно работает под Wine. На 4-х часовом стриме сделал игру Interceptor 2021, это сиквел игры Interceptor 2020 которая была написана для ZX Spectrum.

Для тех кто в танке – технология Флеш обеспечивала интерактивность в вебе с 2000 по примерно 2015 год. К ее закрытию привело открытое письмо Стива Джобса в котором он написал что Флешу пора на свалку истории, т.к. на айфоне он тормозит. За это время JS стал тормозить еще больше чем флеш, а сам Флеш обернули в JS и теперь его можно запускать на чём угодно благодаря плееру Ruffle.

Поиграть можно тут:
https://demensdeum.com/demos/Interceptor2021

Видео:
https://www.youtube.com/watch?v=-3b5PkBvHQk

Исходный код:
https://github.com/demensdeum/Interceptor-2021

CRUD репозиторий

В этой заметке я опишу основные принципы известного классического паттерна CRUD, реализацию на языке Swift. Swift является открытым, кроссплатформенным языком, доступным для ОС Windows, Linux, macOS, iOS, Android.

Существует множество решений абстрагирования хранилища данных и логики приложения. Одним из таких решений является подход CRUD, это акроним от C – Create, R -Read, U – Update, D – Delete.
Обычно реализация этого принципа обеспечивается с помощью реализации интерфейса к базе данных, в котором работа с элементами происходит с использованием уникального идентификатора, например id. Создается интерфейс по каждой букве CRUD – Create(object, id), Read(id), Update(object, id), Delete(object, id).
Если объект содержит id внутри себя, то аргумент id можно упустить в части методов (Create, Update, Delete), так как туда передается объект целиком вместе со своим полем – id. А вот для – Read требуется id, так как мы хотим получить объект из базы данных по идентификатору.

Все имена вымышлены

Представим что гипотетическое приложение AssistantAI создавалось с использованием бесплатной SDK базы данных EtherRelm, интеграция была простой, API очень удобным, в итоге приложение было выпущено в маркеты.
Внезапно компания-разработчик SDK EtherRelm решает сделать её платной, устанавливая цену в 100$ в год за одного пользователя приложения.
Что? Да! Что же теперь делать разработчикам из AssistantAI, ведь у них уже 1млн активных пользователей! Платить 100 млн долларов?
Вместо этого принимается решение оценить перенос приложения на нативную для платформы базу данных RootData, по оценке программистов такой перенос займет около полугода, это без учета реализации новых фич в приложении. После недолгих раздумий, принимается решение убрать приложение из маркетов, переписать его на другом бесплатном кроссплатформенном фреймворке со встроенной базой данных BueMS, это решит проблему с платностью БД + упростит разработку на другие платформы.
Через год приложение переписано на BueMS, но тут внезапно разработчик фреймворка решает сделать его платным. Получается что команда попала в одну и ту же ловушку дважды, получится ли у них выбраться во второй раз, это уже совершенно другая история.

Абстракция на помощь

Этих проблем удалось бы избежать, если бы разработчики использовали абстракцию интерфейсов внутри приложения. К трем китам ООП – полиморфизму, инкапсуляции, наследованию, не так давно добавили еще одного – абстракцию.
Абстракция данных позволяет описывать идеи, модели в общих чертах, с минимум деталей, при этом достаточно точной для реализации конкретных имплементаций, которые используют для решения бизнес-задач.
Как мы можем абстрагировать работу с базой данных, чтобы логика приложения не зависела от нее? Используем подход CRUD!

Упрощенно UML схема CRUD выглядит так:

Пример с вымышленной базой данных EtherRelm:

Пример с настоящей базой данных SQLite:

Как вы уже заметили, при переключении базы данных, меняется только она, интерфейс CRUD с которым взаимодействует приложение остается неизменным. CRUD является вариантом реализации паттерна GoF – Адаптер, т.к. с помощью него мы адаптируем интерфейсы приложения к любой базе данных, совмещаем несовместимые интерфейсы.
Слова это пустое, покажи мне код
Для реализации абстракций в языках программирования используют интерфейсы/протоколы/абстрактные классы. Все это явления одного порядка, однако на собеседованиях вас могут попросить назвать разницу между ними, я лично считаю что в этом особого смысла нет т.к. единственная цель использования это реализация абстракции данных, в остальном это проверка памяти интервьюируемого.
CRUD часто реализуют в рамках паттерна Репозиторий, репозиторий однако может реализовывать интерфейс CRUD, а может и не реализовывать, всё зависит от изобретательности разработчика.

Рассмотрим достаточно типичный Swift код репозитория структур Book, работающий напрямую с базой данных UserDefaults:

import Foundation

struct Book: Codable {
	let title: String
	let author: String
}

class BookRepository {
	func save(book: Book) {
    		let record = try! JSONEncoder().encode(book)
    		UserDefaults.standard.set(record, forKey: book.title)
	}
    
	func get(bookWithTitle title: String) -> Book? {
    		guard let data = UserDefaults.standard.data(forKey: title) else { return nil }
    		let book = try! JSONDecoder().decode(Book.self, from: data)
    		return book
	}
    
	func delete(book: Book) {
    		UserDefaults.standard.removeObject(forKey: book.title)
	}
}

let book = Book(title: "Fear and Loathing in COBOL", author: "Sir Edsger ZX Spectrum")
let repository = BookRepository()
repository.save(book: book)
print(repository.get(bookWithTitle: book.title)!)
repository.delete(book: book)
guard repository.get(bookWithTitle: book.title) == nil else {
	print("Error: can't delete Book from repository!")
	exit(1)
}

Код выше кажется простым, однако посчитаем количество нарушений принципа DRY (Do not Repeat Yourself) и связанность кода:
Связанность с базой данных UserDefaults
Связанность с энкодерами и декодерами JSON – JSONEncoder, JSONDecoder
Связанность со структурой Book, а нам нужен абстрактный репозиторий чтобы не создавать по классу репозитория для каждой структуры, которую мы будем хранить в базе данных (нарушение DRY)

Такой код CRUD репозитория я встречаю достаточно часто, пользоваться им можно, однако высокая связанность, дублирование кода, приводят к тому что со временем его поддержка очень сильно усложнится. Особенно это будет ощущаться при попытке перейти на другую базу данных, либо при изменении внутренней логики работы с бд во всех созданных в приложении репозиториях.
Вместо того чтобы дублировать код, держать высокую связанность – напишем протокол для CRUD репозитория, таким образом абстрагируя интерфейс базы данных и бизнес-логики приложения, соблюдая DRY, осуществляя низкую связанность:

protocol CRUDRepository {
    typealias Item = Codable
    typealias ItemIdentifier = String
    
    func create<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws
    func read<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier) async throws -> T
    func update<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws
    func delete(id: CRUDRepository.ItemIdentifier) async throws
}

Протокол CRUDRepository описывает интерфейсы и ассоциированные типы данных для дальнейшей реализации конкретного CRUD репозитория.

Далее напишем конкретную реализацию для базы данных UserDefaults:

class UserDefaultsRepository: CRUDRepository {
    private typealias RecordIdentifier = String
    
    let tableName: String
    let dataTransformer: DataTransformer
    
    init(
   	 tableName: String = "",
   	 dataTransformer: DataTransformer = JSONDataTransformer()
    ) {
   	 self.tableName = tableName
   	 self.dataTransformer = dataTransformer
    }
    
    private func key(id: CRUDRepository.ItemIdentifier) -> RecordIdentifier {
   	 "database_\(tableName)_item_\(id)"
    }
   	 
    private func isExists(id: CRUDRepository.ItemIdentifier) async throws -> Bool {
   	 UserDefaults.standard.data(forKey: key(id: id)) != nil
    }
    
    func create<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
   	 let data = try await dataTransformer.encode(item)
   	 UserDefaults.standard.set(data, forKey: key(id: id))
   	 UserDefaults.standard.synchronize()
    }
    
    func read<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier) async throws -> T {
   	 guard let data = UserDefaults.standard.data(forKey: key(id: id)) else {
   		 throw CRUDRepositoryError.recordNotFound(id: id)
   	 }
   	 let item: T = try await dataTransformer.decode(data: data)
   	 return item
    }
    
    func update<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
   	 guard try await isExists(id: id) else {
   		 throw CRUDRepositoryError.recordNotFound(id: id)
   	 }
   	 let data = try await dataTransformer.encode(item)
   	 UserDefaults.standard.set(data, forKey: key(id: id))
   	 UserDefaults.standard.synchronize()
    }
    
    func delete(id: CRUDRepository.ItemIdentifier) async throws {
   	 guard try await isExists(id: id) else {
   		 throw CRUDRepositoryError.recordNotFound(id: id)
   	 }
   	 UserDefaults.standard.removeObject(forKey: key(id: id))
   	 UserDefaults.standard.synchronize()
    }
}

Код выглядит длинным, однако содержит полную конкретную реализацию CRUD репозитория, содержащим слабую связанность, подробности далее.
typealias’ы добавлены для самодокументирования кода.
Слабая связанность и сильная связность
Отвязка от конкретной структуры (struct) реализуется с помощью генерика T, который в свою очередь должен имплементировать протоколы Codable. Codable позволяет производить преобразование структур с помощью классов которые реализуют протоколы TopLevelEncoder и TopLevelDecoder, например JSONEncoder и JSONDecoder, при использовании базовых типов (Int, String, Float и т.д.) нет необходимости писать дополнительный код для преобразования структур.

Отвязка от конкретного энкодера и декодера происходит с помощью абстрагирования в протоколе DataTransformer:

protocol DataTransformer {
	func encode<T: Encodable>(_ object: T) async throws -> Data
	func decode<T: Decodable>(data: Data) async throws -> T
}

С помощью реализации дата-трансформера мы реализовали абстракцию интерфейсов энкодера и декодера, реализовав слабую связанность для обеспечения работы с различными типами форматов данных.

Далее приводится код конкретного DataTransformer, а именно для JSON:

class JSONDataTransformer: DataTransformer {
	func encode<T>(_ object: T) async throws -> Data where T : Encodable {
    		let data = try JSONEncoder().encode(object)
    		return data
	}
    
	func decode<T>(data: Data) async throws -> T where T : Decodable {
    		let item: T = try JSONDecoder().decode(T.self, from: data)
    		return item
	}
}

А так можно было?

Что же изменилось? Теперь достаточно проинициализировать конкретный репозиторий для работы с любой структурой которая имплементирует протокол Codable, таким образом исчезает потребность в дублировании кода, реализуется слабая связанность приложения.

Пример клиентский CRUD с конкретным репозиторием, в качестве базы данных выступает UserDefaults, формат данных JSON, структура Client, также пример записи и считывания массива:

import Foundation

print("One item access example")

do {
	let clientRecordIdentifier = "client"
	let clientOne = Client(name: "Chill Client")
	let repository = UserDefaultsRepository(
    	tableName: "Clients Database",
    	dataTransformer: JSONDataTransformer()
	)
	try await repository.create(id: clientRecordIdentifier, item: clientOne)
	var clientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print("Client Name: \(clientRecord.name)")
	clientRecord.name = "Busy Client"
	try await repository.update(id: clientRecordIdentifier, item: clientRecord)
	let updatedClient: Client = try await repository.read(id: clientRecordIdentifier)
	print("Updated Client Name: \(updatedClient.name)")
	try await repository.delete(id: clientRecordIdentifier)
	let removedClientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print(removedClientRecord)
}
catch {
	print(error.localizedDescription)
}

print("Array access example")

let clientArrayRecordIdentifier = "clientArray"
let clientOne = Client(name: "Chill Client")
let repository = UserDefaultsRepository(
	tableName: "Clients Database",
	dataTransformer: JSONDataTransformer()
)
let array = [clientOne]
try await repository.create(id: clientArrayRecordIdentifier, item: array)
let savedArray: [Client] = try await repository.read(id: clientArrayRecordIdentifier)
print(savedArray.first!)

При первой проверке CRUD реализована обработка исключения, при которой чтение удаленного айтема будет уже недоступно.

Переключаем базы данных

Теперь я покажу как перенести текущий код на другую базу данных. Для примера возьму код репозитория SQLite который сгенерил ChatGPT:

import SQLite3

class SQLiteRepository: CRUDRepository {
    private typealias RecordIdentifier = String
    
    let tableName: String
    let dataTransformer: DataTransformer
    private var db: OpaquePointer?

    init(
   	 tableName: String,
   	 dataTransformer: DataTransformer = JSONDataTransformer()
    ) {
   	 self.tableName = tableName
   	 self.dataTransformer = dataTransformer
   	 self.db = openDatabase()
   	 createTableIfNeeded()
    }
    
    private func openDatabase() -> OpaquePointer? {
   	 var db: OpaquePointer? = nil
   	 let fileURL = try! FileManager.default
   		 .url(for: .documentDirectory, in: .userDomainMask, appropriateFor: nil, create: false)
   		 .appendingPathComponent("\(tableName).sqlite")
   	 if sqlite3_open(fileURL.path, &db) != SQLITE_OK {
   		 print("error opening database")
   		 return nil
   	 }
   	 return db
    }
    
    private func createTableIfNeeded() {
   	 let createTableString = """
   	 CREATE TABLE IF NOT EXISTS \(tableName) (
   	 id TEXT PRIMARY KEY NOT NULL,
   	 data BLOB NOT NULL
   	 );
   	 """
   	 var createTableStatement: OpaquePointer? = nil
   	 if sqlite3_prepare_v2(db, createTableString, -1, &createTableStatement, nil) == SQLITE_OK {
   		 if sqlite3_step(createTableStatement) == SQLITE_DONE {
       		 print("\(tableName) table created.")
   		 } else {
       		 print("\(tableName) table could not be created.")
   		 }
   	 } else {
   		 print("CREATE TABLE statement could not be prepared.")
   	 }
   	 sqlite3_finalize(createTableStatement)
    }
    
    private func isExists(id: CRUDRepository.ItemIdentifier) async throws -> Bool {
   	 let queryStatementString = "SELECT data FROM \(tableName) WHERE id = ?;"
   	 var queryStatement: OpaquePointer? = nil
   	 if sqlite3_prepare_v2(db, queryStatementString, -1, &queryStatement, nil) == SQLITE_OK {
   		 sqlite3_bind_text(queryStatement, 1, id, -1, nil)
   		 if sqlite3_step(queryStatement) == SQLITE_ROW {
       		 sqlite3_finalize(queryStatement)
       		 return true
   		 } else {
       		 sqlite3_finalize(queryStatement)
       		 return false
   		 }
   	 } else {
   		 print("SELECT statement could not be prepared.")
   		 throw CRUDRepositoryError.databaseError
   	 }
    }
    
    func create<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
   	 let insertStatementString = "INSERT INTO \(tableName) (id, data) VALUES (?, ?);"
   	 var insertStatement: OpaquePointer? = nil
   	 if sqlite3_prepare_v2(db, insertStatementString, -1, &insertStatement, nil) == SQLITE_OK {
   		 let data = try await dataTransformer.encode(item)
   		 sqlite3_bind_text(insertStatement, 1, id, -1, nil)
   		 sqlite3_bind_blob(insertStatement, 2, (data as NSData).bytes, Int32(data.count), nil)
   		 if sqlite3_step(insertStatement) == SQLITE_DONE {
       		 print("Successfully inserted row.")
   		 } else {
       		 print("Could not insert row.")
       		 throw CRUDRepositoryError.databaseError
   		 }
   	 } else {
   		 print("INSERT statement could not be prepared.")
   		 throw CRUDRepositoryError.databaseError
   	 }
   	 sqlite3_finalize(insertStatement)
    }
    
    func read<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier) async throws -> T {
   	 let queryStatementString = "SELECT data FROM \(tableName) WHERE id = ?;"
   	 var queryStatement: OpaquePointer? = nil
   	 var item: T?
   	 if sqlite3_prepare_v2(db, queryStatementString, -1, &queryStatement, nil) == SQLITE_OK {
   		 sqlite3_bind_text(queryStatement, 1, id, -1, nil)
   		 if sqlite3_step(queryStatement) == SQLITE_ROW {
       		 let queryResultCol1 = sqlite3_column_blob(queryStatement, 0)
       		 let queryResultCol1Length = sqlite3_column_bytes(queryStatement, 0)
       		 let data = Data(bytes: queryResultCol1, count: Int(queryResultCol1Length))
       		 item = try await dataTransformer.decode(data: data)
   		 } else {
       		 throw CRUDRepositoryError.recordNotFound(id: id)
   		 }
   	 } else {
   		 print("SELECT statement could not be prepared")
   		 throw CRUDRepositoryError.databaseError
   	 }
   	 sqlite3_finalize(queryStatement)
   	 return item!
    }
    
    func update<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
   	 guard try await isExists(id: id) else {
   		 throw CRUDRepositoryError.recordNotFound(id: id)
   	 }
   	 let updateStatementString = "UPDATE \(tableName) SET data = ? WHERE id = ?;"
   	 var updateStatement: OpaquePointer? = nil
   	 if sqlite3_prepare_v2(db, updateStatementString, -1, &updateStatement, nil) == SQLITE_OK {
   		 let data = try await dataTransformer.encode(item)
   		 sqlite3_bind_blob(updateStatement, 1, (data as NSData).bytes, Int32(data.count), nil)
   		 sqlite3_bind_text(updateStatement, 2, id, -1, nil)
   		 if sqlite3_step(updateStatement) == SQLITE_DONE {
       		 print("Successfully updated row.")
   		 } else {
       		 print("Could not update row.")
       		 throw CRUDRepositoryError.databaseError
   		 }
   	 } else {
   		 print("UPDATE statement could not be prepared.")
   		 throw CRUDRepositoryError.databaseError
   	 }
   	 sqlite3_finalize(updateStatement)
    }
    
    func delete(id: CRUDRepository.ItemIdentifier) async throws {
   	 guard try await isExists(id: id) else {
   		 throw CRUDRepositoryError.recordNotFound(id: id)
   	 }
   	 let deleteStatementString = "DELETE FROM \(tableName) WHERE id = ?;"
   	 var deleteStatement: OpaquePointer? = nil
   	 if sqlite3_prepare_v2(db, deleteStatementString, -1, &deleteStatement, nil) == SQLITE_OK {
   		 sqlite3_bind_text(deleteStatement, 1, id, -1, nil)
   		 if sqlite3_step(deleteStatement) == SQLITE_DONE {
       		 print("Successfully deleted row.")
   		 } else {
       		 print("Could not delete row.")
       		 throw CRUDRepositoryError.databaseError
   		 }
   	 } else {
   		 print("DELETE statement could not be prepared.")
   		 throw CRUDRepositoryError.databaseError
   	 }
   	 sqlite3_finalize(deleteStatement)
    }
}

Или код CRUD репозитория для файловой системы который тоже сгенерила ChatGPT:

import Foundation

class FileSystemRepository: CRUDRepository {
	private typealias RecordIdentifier = String
    
	let directoryName: String
	let dataTransformer: DataTransformer
	private let fileManager = FileManager.default
	private var directoryURL: URL
    
	init(
    	directoryName: String = "Database",
    	dataTransformer: DataTransformer = JSONDataTransformer()
	) {
    	self.directoryName = directoryName
    	self.dataTransformer = dataTransformer
   	 
    	let paths = fileManager.urls(for: .documentDirectory, in: .userDomainMask)
    	directoryURL = paths.first!.appendingPathComponent(directoryName)
   	 
    	if !fileManager.fileExists(atPath: directoryURL.path) {
        	try? fileManager.createDirectory(at: directoryURL, withIntermediateDirectories: true, attributes: nil)
    	}
	}
    
	private func fileURL(id: CRUDRepository.ItemIdentifier) -> URL {
    	return directoryURL.appendingPathComponent("item_\(id).json")
	}
    
	private func isExists(id: CRUDRepository.ItemIdentifier) async throws -> Bool {
    	return fileManager.fileExists(atPath: fileURL(id: id).path)
	}
    
	func create<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
    	let data = try await dataTransformer.encode(item)
    	let url = fileURL(id: id)
    	try data.write(to: url)
	}
    
	func read<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier) async throws -> T {
    	let url = fileURL(id: id)
    	guard let data = fileManager.contents(atPath: url.path) else {
        	throw CRUDRepositoryError.recordNotFound(id: id)
    	}
    	let item: T = try await dataTransformer.decode(data: data)
    	return item
	}
    
	func update<T: CRUDRepository.Item>(id: CRUDRepository.ItemIdentifier, item: T) async throws {
    	guard try await isExists(id: id) else {
        	throw CRUDRepositoryError.recordNotFound(id: id)
    	}
    	let data = try await dataTransformer.encode(item)
    	let url = fileURL(id: id)
    	try data.write(to: url)
	}
    
	func delete(id: CRUDRepository.ItemIdentifier) async throws {
    	guard try await isExists(id: id) else {
        	throw CRUDRepositoryError.recordNotFound(id: id)
    	}
    	let url = fileURL(id: id)
    	try fileManager.removeItem(at: url)
	}
}

Заменяем репозиторий в клиентском коде:

import Foundation

print("One item access example")

do {
	let clientRecordIdentifier = "client"
	let clientOne = Client(name: "Chill Client")
	let repository = FileSystemRepository(
    	directoryName: "Clients Database",
    	dataTransformer: JSONDataTransformer()
	)
	try await repository.create(id: clientRecordIdentifier, item: clientOne)
	var clientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print("Client Name: \(clientRecord.name)")
	clientRecord.name = "Busy Client"
	try await repository.update(id: clientRecordIdentifier, item: clientRecord)
	let updatedClient: Client = try await repository.read(id: clientRecordIdentifier)
	print("Updated Client Name: \(updatedClient.name)")
	try await repository.delete(id: clientRecordIdentifier)
	let removedClientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print(removedClientRecord)
}
catch {
	print(error.localizedDescription)
}

print("Array access example")

let clientArrayRecordIdentifier = "clientArray"
let clientOne = Client(name: "Chill Client")
let repository = FileSystemRepository(
	directoryName: "Clients Database",
	dataTransformer: JSONDataTransformer()
)
let array = [clientOne]
try await repository.create(id: clientArrayRecordIdentifier, item: array)
let savedArray: [Client] = try await repository.read(id: clientArrayRecordIdentifier)
print(savedArray.first!)

Инициализация UserDefaultsRepository заменена на FileSystemRepository, с соотетствующими аргументами.
После запуска второго варианта клиентского кода, вы обнаружите в папке документов директорию “Clients Database”, которая будет содержать в себе файл сериализованного в JSON массива с одной структурой Client.

Переключаем формат хранения данных

Теперь попросим ChatGPT сгенерить энкодер и декодер для XML:

class XMLDataTransformer: DataTransformer {
	let formatExtension = "xml"
    
	func encode<T: Encodable>(_ item: T) async throws -> Data {
    	let encoder = PropertyListEncoder()
    	encoder.outputFormat = .xml
    	return try encoder.encode(item)
	}
    
	func decode<T: Decodable>(data: Data) async throws -> T {
    	let decoder = PropertyListDecoder()
    	return try decoder.decode(T.self, from: data)
	}
}

Благодаря встроенным типам в Swift, задача для нейросети становится элементарной.

Заменяем JSON на XML в клиентском коде:

import Foundation

print("One item access example")

do {
	let clientRecordIdentifier = "client"
	let clientOne = Client(name: "Chill Client")
	let repository = FileSystemRepository(
    	directoryName: "Clients Database",
    	dataTransformer: XMLDataTransformer()
	)
	try await repository.create(id: clientRecordIdentifier, item: clientOne)
	var clientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print("Client Name: \(clientRecord.name)")
	clientRecord.name = "Busy Client"
	try await repository.update(id: clientRecordIdentifier, item: clientRecord)
	let updatedClient: Client = try await repository.read(id: clientRecordIdentifier)
	print("Updated Client Name: \(updatedClient.name)")
	try await repository.delete(id: clientRecordIdentifier)
	let removedClientRecord: Client = try await repository.read(id: clientRecordIdentifier)
	print(removedClientRecord)
}
catch {
	print(error.localizedDescription)
}

print("Array access example")

let clientArrayRecordIdentifier = "clientArray"
let clientOne = Client(name: "Chill Client")
let repository = FileSystemRepository(
	directoryName: "Clients Database",
	dataTransformer: XMLDataTransformer()
)
let array = [clientOne]
try await repository.create(id: clientArrayRecordIdentifier, item: array)
let savedArray: [Client] = try await repository.read(id: clientArrayRecordIdentifier)
print(savedArray.first!)

Клиентский код изменился только на одно выражение JSONDataTransformer -> XMLDataTransformer

Итог

CRUD репозитории один из паттернов проектирования, которые можно использовать для реализации слабой связанности компонентов архитектуры приложения. Еще одно из решений – использование ORM (Объектно-реляционный маппинг), если вкратце то в ОРМ используется подход при котором структуры полностью мапятся на базу данных, и затем изменения с моделями должны отображаться (маппиться(!)) на бд.
Но это уже совсем другая история.

Полная реализация репозиториев CRUD для Swift доступна по ссылке:
https://gitlab.com/demensdeum/crud-example

Кстати Swift давно поддерживается вне macOS, код из статьи был польностью написан и протестирован на Arch Linux.

Источники

https://developer.apple.com/documentation/combine/topleveldecoder
https://developer.apple.com/documentation/combine/toplevelencoder
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

dd input/output error

Что делать если при копировании нормального диска с помощью dd в Linux вы получили ошибку input/output error?

Ситуевина очень грустная, но решаемая. Скорее всего вы имеете дело со сбойным диском, содержащим bad блоки которые уже невозможно использовать, записывать и считывать данные.

Обязательно проверьте такой диск с помощью S.M.A.R.T., скорее всего он покажет вам ошибки диска. Так было в моем случае, количество сбойных блоков было настолько огромным, что пришлось распрощаться со старым жестким диском и заменить его на новый SSD.

Проблема была в том, что на этом диске была полностью рабочая система с лицензионным софтом, который необходим в работе. Я предпринял попытку использовать partimage, для быстрого копирования данных, но вдруг обнаружил что утилита копирует лишь треть диска, далее завершается толи с segfault, толи с каким-то другим своим веселым Сишным/Сиплюсплюсным приколом.

Далее я попробовал скопировать данные с помощью dd, и обнаружилось что dd доходит примерно тудаже где и partimage, и потом наступает ошибка input/output error. При этом всякие веселые флажки навроде conv=noerr,skip или еще чего-то такого совершенно не помогали.

Зато данные на другой диск удалось скопировать без проблем с помощью утилиты GNU под названием ddrescue.

ddrescue /dev/sda1 /dev/sdb1

После этого мои волосы стали шелковистыми, вернулась жена, дети и собака перестала кусать диван.

Большим плюсом ddrescue является наличие встроенного прогрессбара, поэтому не приходится костылять какие-то ухищрения навроде pv и всяких не особо красивых флажков dd. Также ddrescure показывает количество попыток прочитать данные; еще на вики написано что утилита обладает каким-то сверх алгоритмом для считывания поврежденных данных, оставим это на проверку людям которые любят ковыряться в исходниках, мы же не из этих да?

https://ru.wikipedia.org/wiki/Ddrescue
https://www.gnu.org/software/ddrescue/ddrescue_ru.html

ChatGPT

Всем привет! В этой статье я хочу рассказать о ChatGPT – мощном языковом моделировании от OpenAI, которое может помочь в решении различных задач, связанных с обработкой текста. Я покажу, как этот инструмент работает, и как его можно использовать в практических ситуациях. Приступим!

На данный момент ChatGPT является одной из лучших в мире языковых моделей на основе нейронных сетей. Она была создана с целью помочь разработчикам в создании интеллектуальных систем, которые способны генерировать естественный язык и общаться с людьми на нём.

Одним из ключевых преимуществ ChatGPT является его способность к контекстной моделировке текста. Это означает, что модель учитывает предыдущий диалог и использует его для более точного понимания ситуации и генерации более естественного ответа.

Вы можете использовать ChatGPT для решения различных задач, таких как автоматизация клиентской поддержки, создание чат-ботов, генерация текста и многое другое.

Нейронные сети, которые стоят за ChatGPT, были обучены на огромных массивах текста, чтобы обеспечить высокую точность предсказаний. Это позволяет модели генерировать естественный текст, который может поддерживать диалог и отвечать на вопросы.

С помощью ChatGPT вы можете создавать собственные чат-боты и другие интеллектуальные системы, которые способны взаимодействовать с людьми на естественном языке. Это может быть особенно полезно в таких отраслях, как туризм, розничная торговля и клиентская поддержка.

В заключение, ChatGPT – это мощный инструмент для решения различных задач языкового моделирования. Его способность к контекстной моделировке делает его особенно полезным для создания чат-ботов и интеллектуальных систем.


На самом деле всё что выше написала ChatGPT полностью сама. Что? Да? Я сам в шоке!

Саму сетку можно опробовать здесь:
https://chat.openai.com/chat

Запускаем Unreal Tournament 99 на MacBook с M1

macOS M1 Ventura

Если вы преданный фанат Unreal Tournament 99 как я, то вам захочется запустить игру на последних версиях операционных систем и железа. У меня есть успешный опыт запуска Unreal Tournament 99 на MacBook Pro с процессором M1 под операционной системой macOS Ventura 13.0.1.

  1. Чтобы запустить игру под macOS для процессора M1 нужно:
  2. Скачать версию из репозитория, https://github.com/OldUnreal/UnrealTournamentPatches/releases для macOS.
  3. Cкидываем UnrealTournament.app в директорию /Applications
  4. Создаем папку Unreal Tournament в директории ~/Library/Application Support/
  5. Копируем из Windows версии папки Maps, Sounds, Textures, Music в папку ~/Library/Application Support/Unreal Tournament
  6. Удаляем из папки ~/Library/Application Support/Unreal Tournament/Textures файлы LadderFonts.utx, UWindowFonts.utx
  7. Запускаем UnrealTournament.app из /Applications, наслаждаемся фрагами!

Предпоследний шаг нужен чтобы отображались корректные шрифты, оригинальные отображаются слишком мелко.
После запуска настройте разрешение экрана, клавиатуру, размер шрифта в GUI, прочие нужные настройки.

Unreal Tournament macOS Ventura M1

Windows 11

Также на десерт запуск Unreal Tournament 99 на Windows 11, игра работает сразу после установки, без дополнительного шаманства, однако есть проблемы с отображением GUI, производительностью устаревшего D3D рендера. Поэтому лучше использовать пропатченную версию.

  1. Процесс запуска очень похож на запуск для macOS:
  2. Скачать версию из репозитория https://github.com/OldUnreal/UnrealTournamentPatches/releases для Windows, например в zip.
  3. Распаковать с заменой файлы поверх текущего Unreal Tournament.
  4. Запуститть игру из [Папка игры]/System/UnrealTournament.exe

Радует что такой шедевр продолжают поддерживать фанаты и есть возможность покатать каточку даже на современном железе.

Включаем подсветку USB клавиатуры на macOS

Недавно купил очень недорогую USB-клавиатуру Getorix GK-45X, с RGB подсветкой. Подключив ее к Макбуку Pro на процессоре M1 стало понятно что RGB подсветка не работает. Даже нажимая волшебную комбинацию Fn + Scroll Lock включить подсветку не удалось, менялся только уровень подсветки экрана макбука.
Решений этой проблемы несколько, а именно OpenRGB (не работает), HID LED Test (не работает). Cработала только утилита kvmswitch:
https://github.com/stoutput/OSX-KVM

Надо ее скачать из гитхаба и разрешить для запуска из терминала в Security панели System Settings.
Как я понял из описания, после запуска утилита отправляет нажатие Fn + Scroll Lock, таким образом включая/выключая подсветку на клавиатуре.

Tree sort

Tree sort – сортировка двоичным деревом поиска. Временная сложность – O(n²). В таком дереве у каждой ноды слева числа меньше ноды, справа больше ноды, при приходе от корня и распечатке значений слева направо, получаем отсортированный список чисел. Удивительно да?

Рассмотрим схему двоичного дерева поиска:

Derrick Coetzee (public domain)

Попробуйте вручную прочитать числа начиная с предпоследней левой ноды нижнего левого угла, для каждой ноды слева – нода – справа.

Получится так:

  1. Предпоследняя нода слева внизу – 3.
  2. У нее есть левая ветвь – 1.
  3. Берем это число (1)
  4. Дальше берем саму вершину 3 (1, 3)
  5. Справа ветвь 6, но она содержит ветви. Поэтому ее прочитываем таким же образом.
  6. CЛева ветвь ноды 6 число 4 (1, 3, 4)
  7. Сама нода 6 (1, 3, 4, 6)
  8. Справа 7 (1, 3, 4, 6, 7)
  9. Идем наверх к корневой ноде – 8 (1,3, 4 ,6, 7, 8)
  10. Печатаем все что справа по аналогии
  11. Получаем итоговый список – 1, 3, 4, 6, 7, 8, 10, 13, 14

Чтобы реализовать алгоритм в коде потребуются две функции:

  1. Сборка бинарного дерева поиска
  2. Распечатка бинарного дерева поиска в правильно порядке

Собирают бинарное древо поиска также как и прочитывают, к каждой ноде прицепляется число слева или справа, в зависимости от того – меньше оно или больше.

Пример на Lua:

Node = {value = nil, lhs = nil, rhs = nil}

function Node:new(value, lhs, rhs)
    output = {}
    setmetatable(output, self)
    self.__index = self  
    output.value = value
    output.lhs = lhs
    output.rhs = rhs
    output.counter = 1
    return output  
end

function Node:Increment()
    self.counter = self.counter + 1
end

function Node:Insert(value)
    if self.lhs ~= nil and self.lhs.value > value then
        self.lhs:Insert(value)
        return
    end

    if self.rhs ~= nil and self.rhs.value < value then
        self.rhs:Insert(value)
        return
    end

    if self.value == value then
        self:Increment()
        return
    elseif self.value > value then
        if self.lhs == nil then
            self.lhs = Node:new(value, nil, nil)
        else
            self.lhs:Insert(value)
        end
        return
    else
        if self.rhs == nil then
            self.rhs = Node:new(value, nil, nil)
        else
            self.rhs:Insert(value)
        end
        return
    end
end

function Node:InOrder(output)
    if self.lhs ~= nil then
       output = self.lhs:InOrder(output)
    end
    output = self:printSelf(output)
    if self.rhs ~= nil then
        output = self.rhs:InOrder(output)
    end
    return output
end

function Node:printSelf(output)
    for i=0,self.counter-1 do
        output = output .. tostring(self.value) .. " "
    end
    return output
end

function PrintArray(numbers)
    output = ""
    for i=0,#numbers do
        output = output .. tostring(numbers[i]) .. " "
    end    
    print(output)
end

function Treesort(numbers)
    rootNode = Node:new(numbers[0], nil, nil)
    for i=1,#numbers do
        rootNode:Insert(numbers[i])
    end
    print(rootNode:InOrder(""))
end


numbersCount = 10
maxNumber = 9

numbers = {}

for i=0,numbersCount-1 do
    numbers[i] = math.random(0, maxNumber)
end

PrintArray(numbers)
Treesort(numbers)

Важный нюанс что для чисел которые равны вершине придумано множество интересных механизмов подцепления к ноде, я же просто добавил счетчик к классу вершины, при распечатке числа возвращаются по счетчику.

Ссылки

https://gitlab.com/demensdeum/algorithms/-/tree/master/sortAlgorithms/treesort

Источники

TreeSort Algorithm Explained and Implemented with Examples in Java | Sorting Algorithms | Geekific – YouTube

Tree sort – YouTube

Convert Sorted Array to Binary Search Tree (LeetCode 108. Algorithm Explained) – YouTube

Sorting algorithms/Tree sort on a linked list – Rosetta Code

Tree Sort – GeeksforGeeks

Tree sort – Wikipedia

How to handle duplicates in Binary Search Tree? – GeeksforGeeks

Tree Sort | GeeksforGeeks – YouTube

Bucket Sort

Bucket Sort – сортировка ведрами. Алгоритм похож на сортировку подсчетом, с той разницей что числа собираются в «ведра»-диапазоны, затем ведра сортируются с помощью любого другого, достаточно производительного, алгоритма сортировки, и финальным аккордом делается разворачивание «ведер» поочередно, в результате чего получается отсортированный список.

Временная сложность алгоритма O(nk). Алгоритм работает за линейное время для данных которые подчиняются равномерному закону распределения. Если говорить проще, то элементы должны быть в каком-то определенном диапазоне, без «вспесков», например числа от 0.0 до 1.0. Если среди таких чисел есть 4 или 999, то такой ряд по дворовым законам «ровным» уже не считается.

Пример реализации на Julia:

function bucketSort(numbers, bucketsCount)
    buckets = Vector{Vector{Int}}()
    
    for i in 0:bucketsCount - 1
        bucket = Vector{Int}()
        push!(buckets, bucket)
    end

    maxNumber = maximum(numbers)

    for i in 0:length(numbers) - 1
        bucketIndex = 1 + Int(floor(bucketsCount * numbers[1 + i] / (maxNumber + 1)))
        push!(buckets[bucketIndex], numbers[1 + i])
    end

    for i in 0:length(buckets) - 1
        bucketIndex = 1 + i
        buckets[bucketIndex] = sort(buckets[bucketIndex])
    end

    flat = [(buckets...)...]
    print(flat, "\n")

end

numbersCount = 10
maxNumber = 10
numbers = rand(1:maxNumber, numbersCount)
print(numbers,"\n")
bucketsCount = 10
bucketSort(numbers, bucketsCount)

На производительность алгоритма также влияет число ведер, для большего количества чисел лучше взять большее число ведер (Algorithms in a nutshell by George T. Heineman)

Ссылки

https://gitlab.com/demensdeum/algorithms/-/tree/master/sortAlgorithms/bucketSort

Источники

https://www.youtube.com/watch?v=VuXbEb5ywrU
https://www.youtube.com/watch?v=ELrhrrCjDOA
https://medium.com/karuna-sehgal/an-introduction-to-bucket-sort-62aa5325d124
https://www.geeksforgeeks.org/bucket-sort-2/
https://ru.wikipedia.org/wiki/%D0%91%D0%BB%D0%BE%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0
https://www.youtube.com/watch?v=LPrF9yEKTks
https://en.wikipedia.org/wiki/Bucket_sort
https://julialang.org/
https://www.oreilly.com/library/view/algorithms-in-a/9780596516246/ch04s08.html